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A B S T R A C T

Bisphenol A (BPA), one of the most extensively used plasticizers, is an endocrine disrupting chemical (EDC).
Leaching of BPA in food, and water sources causes adverse health effects, therefore, it requires monitoring. In
this work, we developed a simple, low-cost electrochemical sensor for detecting a very low level of BPA in water
using chemically modified multiwall carbon nanotubes (MWCNTs) with β-cyclodextrin (βCD) on screen-printed
carbon electrode (SPCE). The electrochemical sensing of BPA showed a completely irreversible process with
diffusion-controlled oxidation involving two electrons and two protons. At an optimized condition, the sensor
showed a two-step linear response from 125 nM to 2 μM and 2 to 30 μM, with correlation coefficients of 0.997
and 0.995, respectively. The limit of detection for BPA was determined to be 13.76 nM (SNR= 3). The improved
sensing performance is attributed to host-guest interaction ability of MWCNTs- βCD with BPA due to the
combined effect of hydrophilic behavior of βCD and large surface area of MWCNTs. The sensors exhibited an
excellent reproducibility (RSD = 4.7 %) and stable response over five weeks and negligible interference with
common chemical species in water. The sensor’s reliability test in lake and tap water showed an excellent
recovery of BPA ranging from 96.05 %–108.70 %. These favorable results can enable the development of simple
and cheap portable sensors for monitoring a wide range of BPA levels in the water.

1. Introduction

Bisphenol A (BPA) is one of the most commonly used plasticizers in
plastic products, such as polycarbonate and epoxy resins worldwide
[1,2]. Specifically, this low-cost raw material is prevalent for food
containers, drink packaging, and beverage cans due to its high flex-
ibility, thermal stability, toughness, and endurance. The general name
of BPA is used for 2, 2-bis (4-hydroxyphenyl) propane, and its chemical
formula is (CH3)2C(C6H4OH)2) [1,3]. In general, BPA can be released
into the environment by (1) manufacturing waste, (2) leaching, and (3)
disposing of plastics [3,4]. Every year, about 2000 tons of BPA in-
cluding its products are released into the environment, making water
toxic and polluted, which causes adverse effects in human health [5].
European Food Safety Authority and the United States Environmental
Protection Agency recommended that the maximum acceptable and
tolerable daily intake of BPA is 50 μg/kg BW/day [6,7]. BPA is one of
the most studied endocrine disrupting chemicals (EDCs), responsible for
deceiving the endocrine system into releasing high levels of hormones
such as estrogen in the body [8]. These high levels of hormones are the
causes of many disorders including birth defects, infertility,

reproduction issue, metabolism problem, tumors, and other develop-
mental and behavioral disorders [9–12]. Therefore, the detection of
BPA in water is very essential for health and environment monitoring.

Different types of lab-based analytical techniques, such as liquid
chromatography-mass spectrometry (LC–MS) [13–15], gas chromato-
graphy-mass spectrometry (GC–MS) [16], high-performance liquid
chromatography (HPLC) [17], and ultra-performance liquid chroma-
tography-mass spectrometry (UPLC-MS) [18] are being used to detect
BPA in the environment, food and beverage. While these techniques are
highly sensitive and reproducible, they are expensive, time-consuming
and need skilled operators to operate the instruments. Consequently,
these limitations hinder the real-time, cost-effective detection of BPA.
Moreover, BPA can be detected by colorimetric methods [19], fluor-
escent method [20], biosensors [21–23], and molecular imprinted
polymer (MIP) [24]. Although these methods are highly sensitive, MIPS
and biosensors are not suitable for environmental (i.e. water) mon-
itoring because of their complex fabrication and high-cost. These sen-
sors are also unstable, temperature dependent, and unreliable.

Electrochemical sensing offers an alternative approach to the de-
tection of BPA in water [25]. Electrochemical sensors promise to fast
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response, lower costs, and ease-of-fabrication while allowing high
sensitivity and reproducibility [26–32]. In electrochemical sensing of
BPA, an irreversible process of BPA’s oxidation at bare working elec-
trode produces dimers, which foul the electrode and decrease oxidation
current. Moreover, oxidation at the bare electrode requires higher po-
tential which reduces sensors’ sensitivity. To address these issues, the
sensors are designed by modifying the working electrode with different
materials such as carbon-based nanomaterials [33–35] and their com-
bination with nanoparticles [36–38]. These materials show catalytic
activity to BPA analyte. While many of these sensors do not provide a
low limit of detection [37,39] and others do not offer low-cost or high
linear range [33,40], there is a trade-off among detection limits, con-
centration range, selectivity and stability of the sensors for the appli-
cation needs.

Carbon nanotubes (CNTs) and modified CNTs have been used as an
electrochemical sensor because of their low fabrication cost, and ex-
cellent electrochemical properties [39,41–43]. For example, CNTs
modified with β-cyclodextrin (βCD) exhibited high sensitivity in BPA
detection because of the large effective surface area of CNTs and host-
guest interaction abilities of βCD [44–47]. Physical modification of
CNTs with βCD is a simple method; however, the resultant material
lacks a direct electron transfer path [44] and it is unstable because βCD
is soluble in water [48]. The composite of chemically (covalently)
modified CNTs with βCD increases host-guest interaction abilities
which shows higher sensitivity than physically modified CNTs-βCD
[44]. Also, there are different approaches including “click” chemistry
(CC) based- [49], and thionyl chloride-mediated esterification (TE) [44]
used for chemical modification of CNTs with βCD. While the CC method
is a complex and multistep (four-step) synthesis process, the TE method
(two-step synthesis) provides a relatively small amount of βCD at-
tachment at the edges of the CNTs. Besides, the TE method needs
processing in controlled air as well as moisture sensitive substances.

In this work, we fabricated a simple, rapid, cheap, and highly sen-
sitive electrochemical BPA sensor based on chemically (covalently)
modified multi-walled carbon nanotubes (MWCNTs) with βCD on
screen-printed carbon electrode (SPCE). The chemical modification of
MWCNTs-βCD was done by one step steglich esterification [50] on the
SPCE surface due to its higher immobilization of βCD with MWCNTs
over CC and TE methods.

2. Materials, method and procedure

2.1. Reagents and materials

Bisphenol A (BPA), bisphenol S (BPS), acetaminophen (APAP), β-
Cyclodextrin (βCD, ≥97 %), N,N-dimethylformamide (DMF) (>99.9
%), anhydrous N,N-dimethylformamide (DMF) (99.8 %), dicyclohex-
ylcarbodiimide (DCC) (60 wt % in xylenes), 4-(dimethylamino)pyridine
(DMAP) (≥99 %), potassium ferricyanide (III), phosphate buffer solu-
tion (PBS) tablets were purchased from Sigma Aldrich Canada.

MWCNTs (>95 %, OD: 5–15 nm, length: ∼50 μm, electrical con-
ductivity: >100 S·cm–1), and COOH-functionalized MWCNTs
(MWCNTs−COOH, >95 %, OD: 5–15 nm, length: ∼50 μm, electrical
conductivity: >100 S·cm–1) were purchased from U.S. Research
Nanomaterials Inc. All of these chemicals were of analytical grade. One
PBS tablet was dissolved into 200 ml DI water to get 0.01 M phosphate
buffer solutions (pH 7.4) with 0.0027 M potassium chloride and 0.137
M sodium chloride. To prepare 0.01 M phosphate buffer solutions of
different pH ((pH 5.8–9.20) with 0.0027 M KCl and 0.137 M NaCl, a
suitable amount of KCl, NaCl, Na2HPO4 and NaH2PO4 were dissolved
into DI.

2.2. Apparatus

PalmSens EmStat 3 potentiostat with a three-electrode cell and
PSTrace 4.8 software was used for all electrochemical measurements
(cyclic voltammetry (CV)/linear sweep voltammetry (LSV)) at room
temperature (25 ± 2 °C) where a platinum (Pt) wire was used as a
counter electrode and an Ag/AgCl electrode was used as a reference
electrode. The SPCE electrode (3 mm diameter i.e. exposed area of
0.071 cm2), the counter electrode and the reference electrodes were
purchased from CH Instruments Inc. USA. DI water (resistivity≥ 18 MΩ
cm), used for preparing different aqueous solutions, was purified by
ELGA Purelab Ultra Water Purifier. Before each electrochemical mea-
surement, the BPA analyte with the working electrode, was stirred by
Thermo Scientific RT Basic magnetic stirrer. The water contact angle
measurement of the working electrode modified with MWCNTs as well
as chemically mixed MWCNTs-βCD composite was done by KRUSS DSA
100 drop shape analyzer.

2.3. Preparation of working electrode

MWCNTs of 2 mg mL−1 was prepared by dispersing 40 mg of
MWCNTs into 20 ml DI water using a probe ultrasonic preprocessor for
10 min. Aqueous solution of MWCNTs-βCD(Chem) and MWCNTs-βCD
(Phys) was obtained by following the processes used by Alam et al.
[50]. The sensitivity of bare SPCE is not good. We have modified the
SPCE electrode by drop-casting aqueous solution of pure MWCNTs or
MWCNTs-βCD(Phys) or MWCNTs-βCD(Chem). Then, the drop-casted
electrode was dried at room temperature for at least 12 h to use for BPA
detection. Here, we focused on the steglich esterification process of
MWCNTs-βCD because it provides superior immobilization of βCD with
MWCNTs. In our previous work, we have provided the covalent linking
between MWCNTs and βCD, where the characteristic peaks of ester
groups in the FTIR spectra comprise the stretching vibration peak of C
= O (at 1729 and 1725 cm−1) and the symmetric vibration peak of −
COO− (at 1382 cm−1), confirming the covalent modification of
MWCNT with βCD through SE chemistry [50]. The preparation of
chemically modified MWCNTs-βCD (MWCNTs-βCD(Chem))/SPCE is
shown in Fig. 1. The amount of MWCNTs-βCD used for modifying the

Fig. 1. Schematic of the modification of screen-printed carbon electrode with MWCNTs- βCD (Chem).
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electrode played a significant role in the oxidation of BPA. We got
higher oxidation current when we used 10 μl of MWCNTs-βCD as
shown in Fig. SI 1. Therefore, in this work, 10 μl aqueous solution of
MWCNTs and MWCNTs-βCD was used.

2.4. Preparation of real sample

BPA is a transparent solid which is soluble in organic solvents but
poorly soluble in water. For this reason, first, we made a 1 mM stock
solution of BPA using methanol. We prepared a PBS solution of pH 7.4
using DI water. We diluted the stock solution in PBS such that the total
proportion of methanol in the solution was less than 1 %. Fig. SI 2
shows the effects of methanol level in peak oxidation current of BPA. A
similar process was used to prepare the BPA sample using tap and lake
water. For each electrochemical measurement, we used 50 ml of BPA
aqueous solution in a glass beaker.

3. Results and discussion

3.1. Role of MWCNTs-βCD/SPCE

The electrochemical sensing of BPA relies on the redox activity of
the working electrode towards BPA analyte. To compare the electro-
chemical sensing performance of different modified working electrodes,
cyclic voltammetry (CV) was done, which is shown in Fig. 2. The sen-
sing electrodes of MWCNTs with and without βCD showed oxidation
peaks, but no reduction peaks, indicating the electrochemical sensing of
BPA is an irreversible oxidation process. The scan rate and pH-depen-
dent analysis confirmed that BPA oxidation involves 2 electrons and 2
photons as illustrated below [51].

The sensitivity of bare SPCE electrode toward BPA analyte was poor
where the estimated peak oxidation current (Ipa) was 0.766 μA at oxi-
dation potential (Vpa) of +0.72 V. In the absence of BPA (in PBS, pH:
7.4), no oxidation was observed by MWCNTs-βCD (Chem)/SPCE elec-
trode (red-dashed line, Fig. 2). However, the area under the CV curves
was considerably increased than that of SPCE (yellow curve) due to an
increase of double-layer capacitance. The MWCNT/SPCE electrode
showed high Ipa of 68 μA around Vpa = +0.72 V. As shown in Fig. 2,
utilizing MWCNTs-βCD (Phys)/SPCE and MWCNTs-βCD (Chem)/SPCE
electrodes further improved the oxidation peak current which was
75.51 μA and 84.88 μA, respectively at + 0.73 V. This significant en-
hancement of the sensitivity can be attributed to high conductivity and
large surface area of MWCNTs, the porosity of βCD, and host-guest
interaction capability of MWCNTs-βCD composite [52].

From Fig. 2, it is observed that MWCNTs-βCD (Chem)/SPCE out-
performs other working electrodes. The enhancement in oxidation
current by MWCNTs-βCD (Chem)/SPCE might be due to the multilayer
surface structure of MWCNTs-βCD (Chem)/SPCE which could adsorb
more BPA than that of pure MWCNTs. It is worth noting that the inner
core of βCD is hydrophobic while the outer surface of βCD is hydro-
philic, which is responsible for BPA adsorption. To examine the surface
wettability (hydrophilicity), we investigated the water contact angle of
MWCNTs/SPCE and MWCNTs-βCD (Chem)/SPCE electrodes as shown
in Fig. 3. The water contact angle of MWCNTs/SPCE and MWCNTs-βCD
(Chem)/SPCE electrodes was 68.8 ± 0.52° and 53.2 ± 0.91° respec-
tively. Thus, higher hydrophilic behavior of MWCNTs-βCD/SPCE spe-
cimen than that of MWCNTs/SPCE may facilitate more oxidation of
BPA and provide higher sensitivity toward BPA.

3.2. Role of surface area

K3[Fe(CN)6] redox probe has well-known electrochemical activities
and is commonly used as an internal standard for developing electrodes
in aqueous solutions [53,54]. We examined the redox behaviors of
different working electrodes by K3[Fe(CN)6] redox probe. Fig. 4(a) re-
presents the CV curves of different working electrodes in an aqueous
solution of 5.0 mM K3[Fe(CN6)] with 0.1 M KCl at a scan rate of 60 mV/
s. The difference between oxidation and reduction potential (ΔEp) was
359 mV for bare SPCE. For MWCNTs/SPCE, MWCNTs-βCD(Phys)/
SPCE, and MWCNTs-βCD(Chem)/SPCE, we observed a decrease in ΔEpa

Fig. 2. CVs of MWCNTs-βCD (Chem)/ SPCE (red dashed line) in the absence of
BPA in 0.01 M PBS (pH 7.4); CVs of bare SPCE (yellow), MWCNTs/SPCE (blue),
MWCNTs-βCD (Phys)/SPCE (green) and MWCNTs-βCD (Chem)/ SPCE (red) in
the presence of 20 μM BPA (solid lines) in 0.01 M PBS (pH 7.4) at a scan rate of
60 mV/s (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).

Fig. 3. Water contact angle measurement of (a) MWCNTs/SPCE and (b) che-
mically modified MWCNTs-βCD/SPCE working electrode.
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and an increase in peak oxidation current (Ipa). Because of large surface
area and high conductivity of MWCNTs, the modified electrodes pro-
vide faster electron transfer than that of bare SPCE. Fig. 4 (b) represents
the CV curves of the MWCNTs-βCD (Chem)/SPCE working electrode at
different scan rates. The effective surface area of the electrode can be
calculated by using the Randles–Sevcik equation [53]:

= ×I AD n c2.69 10p
5 1/2 3/2 1/2 (1)

Where Ip is the peak oxidation or reduction current (A), A is the ef-
fective surface area (cm2), D (6.67 × 10−6 cm2 s-1) is the diffusion
coefficient of K3[Fe(CN6)], n is the number of electron transfer (n = 1),
ν is the scan rate (V/s) and C is the bulk concentration of K3[Fe(CN6)]
(mol/cm3).

The inset picture of Fig. 4(b) shows the square root of the scan rate
vs. peak oxidation current. The units of Ipa and ν are ampere and V/s,
respectively. The slope of the Ipa˗ν1/2 curve is 0.00036 (A.s/V), which is
used in Eq. (1) to calculate the effective surface area. The effective
surface area of MWCNTs-βCD(Chem)/SPCE was 0.115 cm2 which is
much higher than that of MWCNTs/SPCE (0.086 cm2) and bare SPCE
(0.071 cm2). Therefore, MWCNTs-βCD (Chem)/SPCE with larger sur-
face area offers much higher sensitivity than other electrodes.

3.3. Effect of scan rate on BPA sensing

The number of electron transfer during the oxidation process of BPA

was examined by scan rate dependent characteristics of MWCNTs-βCD
(Chem)/SPCE in PBS (pH 7.4) with 20 μM BPA. The CV results de-
monstrated that BPA exhibited irreversible oxidation. Thus, for sim-
plicity and rapid sensing, linear sweep voltammetry (LSV) was used at
different scan rates as shown in Fig. 5. The total oxidation current in
electrochemical sensing is the sum of Faraday’s current and charging
current. Usually, Faraday’s current is constant with scan rate while
charging current increases with scan rate, thus, the oxidation current
increased with scan rate. The linear regression relationship of peak
oxidation current (Ipa) and square root of scan rate can be expressed as:

= + =I µA mVs R( ) 72.614 19.287 ( : , 0.994)pa
1
2 1 2 (2)

The linear relationship between Ipa and
1
2 indicates that the oxidation

process was a diffusion-controlled electron transfer process. Fig. 5(c)
represents the relationship between peak oxidation voltage (Epa) and
the natural logarithm of scan rate (ν) (lnv) which can be expressed as:

= + =E V ln mVs R( ) 0.538 0.0479 ( : , 0.9814)pa
1 2 (3)

For an irreversible electrode process, the oxidation potential is ex-
pressed by E. Laviron equation [55]:

= + +E E RT
nF

ln RTK
anF

RT
nF

lnpa
0

0

(4)

Where R is the universal gas constant, T is the absolute temperature, α
is the transfer coefficient, n is the number of electron transfer, F is the

Fig. 4. (a) CV curves of different electrodes in an aqueous solution of 5.0 mM K3[Fe(CN6)] with 0.1 M KCl at a scan rate of 60 mV/s. (b) CV curves for MWCNTs-βCD
(Chem)/SPCE at different scan rate (20, 60, 100, 140, 180, 220, 260, 300, 340, and 380 mV/s) in the same solution.

Fig. 5. (a) LSV of MWCNTs-βCD(Chem)/SPCE
in 0.01 M PBS (pH 7.4) with 20 μM BPA at
different scan rates (20, 60, 100, 140, 180,
220, 260, 300, 340, 380 mVs−1) (b) The re-
lationship between oxidation peak currents
(Ipa) and square root of the scan rates, ν
(mVs−1) (c) The dependency of oxidation peak
potential (Epa) of BPA on lnν.
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Faraday constant, E° is the standard redox potential, and K° is the
standard rate constant of the reaction. From the linear regression of Epa
vs. lnν, the slope of the line as shown in Eq. (3), is 0.0479 = ( )RT

nF ;
which is used to evaluate the value of αn to be 0.905. Usually, for a
complete irreversible process, α = 0.5 is considered. Therefore, the
number of electron transfer (n) is 2 for BPA oxidation at MWCNTs-βCD
(Chem)/SPCE. The results in Fig. 5(a) show that higher scan rate results
in increased oxidation current and voltage which may distort the oxi-
dation peak, thus, in this work we took 60 mVs−1 as optimum value for
the electrochemical sensing of BPA.

3.4. Effect of pH on BPA sensing

The pH of buffer solution has significant influence in acid-base
dissociation of BPA, resulting in its changes of oxidation potential and
current [56]. pH-dependent behavior of BPA sensing was investigated
in the PBS buffer with 30 μM BPA using LSV. Fig. 6 represents the
variation of peak oxidation current (Ipa) as well as peak oxidation po-
tential (Epa) with a standard deviation error bar as a function of the pH
of the electrolyte. Ipa increased with pH until 7.4, then there was a sharp
decrease as shown in Fig. 6(b), which indicates that protons involved in
MWCNTs-βCD/SPCE and BPA reaction process [53]. MWCNTs−COOH
and βCD are used as precursors to synthesis covalently modified
MWCNTs-βCD using one-step steglich esterification [50]. At basic so-
lution, with the increase of pH the residual carboxylic groups (−COOH)
at the surface of MWCNTs are more deprotonated and exist as acidic
anions that repulse the phenolic oxide anions of BPA, subsequently
reduces the oxidation current. Thus, PBS of pH 7.4 was used for the
sensing of BPA in this work.

The relationship between oxidation peak potential and the pH is
presented in Fig. 6(c). The oxidation peak potential decreased with an
increase in pH which can be expressed by the following linear regres-
sion equation:

= + =E V pH R( ) 0.086 1.3501( 0.9897)pa
2 (5)

According to Eq. (5), each unit of pH causes an 86 mV shift in
oxidation peak potential which is slightly higher than the theoretical
Nernst slope (59.5 mV pH−1). Therefore, oxidation of BPA at MWCNTs-
βCD/SPCE involves 2 electrons and 2 protons.

3.5. Voltammetric determination of BPA

Magnetic stirring of the sample improved the BPA oxidation current
of the modified working electrode. The influence of magnetic stirring
on the oxidation current is shown in Fig. SI 3. For the calibration curve
of BPA detection, we used 20 min of magnetic stirring before each LSV
scan. In voltammetric determination of BPA, two dynamic linear ranges
of 0.125 ˗ 2 μM and 2 ˗ 30 μM were observed. Fig. 7(a) and (c) illus-
trates the LSV curves for the BPA concentration ranges of 0.125 ˗ 2 μM

and 2 ˗ 30 μM respectively, at a scan rate of 60 mVs−1. From the fig-
ures, it is observed that oxidation occurs at the potential ranges of 0.72
V-0.75 V. In LSV scan, each curve has a baseline as well. The baseline
subtracted results are presented in Fig. SI 4(a) and SI 4(b) for the
Fig. 7(a) and (c) respectively. Fig. 7(b) and Fig. 7(d) represents the
calibration curves for the concentration (C) ranges of 0.125 – 2 μM and
2 ˗ 30 μM respectively, with standard deviation error bar.

The linear regression equations of Fig. 7(b) and (d) can be expressed
as follows:

= =I µA C µM R( ) 7.1944 ( ) 0.5317( 0.997) [0.125 2 µM, Fig. 7(b)]pa
2

(6)

= + =I µA C µM R( ) 2.159 ( ) 11.586( 0.995)[2 30 µM, Fig. 7(d)]pa
2

(7)

The slope of the two linear regions are different due to concentra-
tion dependent oxidation kinetics of BPA. While the oxidation kinetics
of BPA at low concentration (0.125−2 μM) was associated with ad-
sorption of BPA, the oxidation kinetics at high concentration was re-
lated to both adsorption and diffusion of BPA [57]. Thus, the slope at
high concentration (2.159 μA/μM) is smaller than the slope at low
concentration (7.1944 μA/μM). When the BPA concentration is higher
than 30 μM, we observed that Ipa began to deviate from linear char-
acteristics and became saturated. The limit of detection (LoD) was
calculated using the following equation [58]:

=LoD s m3 / (8)

Where s is the standard deviation of the blank solution (0.033 μA), and
m is the slope of the calibration curve (7.1944 μA/μM). The LoD (SNR
= 3) was 13.76 nM. The high sensitivity of MWCNTs-βCD synthesized
by steglich esterification can be attributed to the moderate amount of
βCD attachment at the end of MWCNTs [50]. Table 1 shows the com-
parison of our work with other carbon–based nanomaterials modified
electrodes reported by different research groups for the detection of
BPA. A good electrochemical sensor possesses several properties such as
low LoD, wide linear range, and low cost. Table 1 shows that our sensor
shows comparable LoD than that of other reports, but with a higher
linear range. Moreover, we achieved these performances at a lower cost
and with simpler fabrication processes. For example, the c-MWCNTs/
GCE sensor reported in [59] offered LoD of 5 nM with linear range (LR)
of 0.01–10 μM while our proposed sensor provided LoD of 13.76 nM
with LR of 0.125–30 μM (3 times higher LR than [59]). Wider LR is
desirable for detecting a wide concentration range of target analyte.
Also, we used a screen-printed carbon electrode (SPCE) which is much
cheaper than that of a glassy carbon electrode (GCE).

Acronyms
C60/GCE = Fullerene/ glassy carbon electrode
CS/N-GS/GCE = Chitosan/nitrogen modified graphene sheet/

glassy carbon electrode

Fig. 6. (a) LSV of MWCNTs-βCD(Chem)/SPCE at different pH (5.80 to 9.20) in 0.01 M PBS with 30 μM BPA at scan rate 60 mVs−1 (b) The relationship between
oxidation peak currents(Ipa) of BPA and pH of electrolyte (c) The dependency of oxidation peak potential (Epa) on pH.
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Gr–CNTs/Pt = Graphene-carbon nanotubes/platinum
EG = Exfoliated graphene
PGA/MWCNT-NH2= polyglutamate Acid/ amino-functionalized

multiwall carbon nanotubes
c-MWCNTs/GCE = Carboxylated- multiwall carbon nanotubes/

glassy carbon electrode
CS/MNPs-rGO/GCE = Chitosan/ magnetic nanoparticles-reduced

graphene oxide/ glassy carbon electrode
CS/MWCNT/GONRs/GCE = Chitosan/ multiwall carbon nano-

tubes/Graphene oxide nano-ribbons/ glassy carbon electrode
f-SWCNT/PC4/GCE = functionalized-single wall carbon nanotubes

/carboxylic-functionalized poly/ glassy carbon electrode
Au/ssDNA/SWCNT = Gold/single strand DNA/ single wall carbon

nanotubes

Fig. 7. (a) LSV of chemically modified MWCNTs-βCD/SPCE in 0.01 M PBS (pH 7.4) with the presence of 0.125 − 2 μM BPA at scan rate 60 mVs−1, (b) The
calibration curve (Ipa vs. concentration) of BPA from the graph (a), (c) LSV of chemically modified MWCNTs-βCD/SPCE in 0.01 M PBS (pH 7.4) with the presence of
2-30 μM BPA (d) the calibration curve (Ipa vs. concentration) of BPA from the graph (c).

Table 1
Comparison of the carbon nanomaterial-based electrochemical sensors for BPA detection.

Electrode Detection method Limit of detection, LoD (μM) Linear Range (μM) Reference

C60/GCE SWV 0.0037 0.074−0.23 [33]
Li4Ti5O12/MWCNTs/GCE DPV 0.0780 0.1−10 [37]
Gr–CNTs/Pt DPV 0.0420 0.06−10 [39]
PGA/MWCNT-NH2 DPV 0.0200 0.1−10 [41]
c-MWCNTs/GCE LSV 0.0050 0.01−10 [59]
f-SWCNT/PC4/GCE CV 0.0320 0.099−5.794 [42]
MWCNT‐GNPs/GCE DPV 0.0075 0.02−20 [60]
Au/ssDNA/SWCNT DPV 0.0110 0.5−3.8 [61]
CS/MNPs-rGO/GCE DPV 0.0170 0.06−11 [38]
EG SWV 0.7600 1.56−50 [62]
CS/N-GS/GCE Amperometric 0.0050 0.01−1.3 [40]
CTAB/SPCE SWV 0.0510 1.0−10 [63]
MWCNTs-βCD/SPCE LSV 0.0137 0.125−2/

2−30
This Work
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I-t = current –time plot
CTAB/SPCE = cetyltrimethylammonium bromide/screen-printed

carbon electrode
MWCNTs-βCD/SPCE = multiwall carbon nanotubes-β cyclodex-

trin/screen-printed carbon electrode

3.6. Interference

A highly selective BPA sensor is critical because there are many
interference elements present in real water including pharmaceutical
contaminants, salts, and plastic pollutants. Furthermore, previously,
differently synthesized MWCNTs-BCD based electrochemical sensors
have been used to detect acetaminophen (APAP) [64] and Bisphenol S
(BPS) [65]. In this work, LSV was performed to investigate the se-
lectivity of the MWCNTs-βCD(Chem)/SPCE electrode to BPA with in-
terferences from APAP, BPS, and salt. From Fig. 8 it is observed that in
the blend (APAP + BPA + BPS curve), APAP, BPA, and BPS were
oxidized at MWCNTs-βCD(Chem)/SPCE electrode about at 0.55 V, 0.73
V, and 1.05 V respectively. The considerable amount of separation
among the oxidation potential of those compounds as well as low oxi-
dation peak current of APAP and BPS compared with BPA indicate that
the modified working electrode is highly selective and sensitive towards
BPA. It was examined that the presence of APAP and BPS did not affect
the peak oxidation current and voltage of BPA, as compared with only
BPA as shown in Fig. 8. In our previous study, cyclic voltammetry re-
sults (Fig. 4 (solid red line) in [64]) showed Epa = 0.35 V and Ipa = 12
uA of 100 μM APAP using MWCNTs-βCD(Phys)/GCE electrode with
scan rate of 20 mV/s at pH 7.4 [64]. In the present study, the higher
oxidation potential (Epa = 0.55 V) and higher oxidation current (Ipa
=18 μA) of APAP are probably due to a high scan rate (60 mV/s).

3.7. Stability and reproducibility

To check the suitability of the electrode for practical use, the sta-
bility and reproducibility of the modified working electrode were

examined. After preparing the electrode we preserved it at room tem-
perature for 35 days. Then we did 10 LSV measurements for 20 μM BPA.
On average, the peak oxidation current retained its 91.2 % original
response which attributed to very good stability of the MWCNTs-βCD/
SPCE electrode. To do the reproducibility test, we prepared 10
MWCNTs-βCD/SPCE electrode and did 10 LSV measurements using
those electrodes for 20 μM BPA. The relative standard deviation (RSD)
of modified electrodes was 4.7 %, representing excellent reproducibility
of the MWCNTs-βCD/SPCE electrode.

3.8. Determination of BPA in real samples

To check the suitability of the sensor for environmental (water)
sensing, we did a recovery test of BPA within real samples such as lake
water (from Bayfront, Hamilton, Canada) and tap water using LSV
under optimal experimental conditions. We used the standard addition
method for the recovery test. First, we prepared 1 mM BPA stock so-
lution using methanol and then, we added an appropriate amount of
0.01 M PBS solution (pH 7.4) to prepare specific concentration of BPA
(e.g. 1 μM, 10 μM, 15 μM, 20 μM, and 30 μM). Table 2 illustrates that
the sensor demonstrated an excellent recovery from 96.05% to 108.7%.

4. Conclusions

We fabricated a very cheap, simple, and highly sensitive electro-
chemical sensor for the detection of BPA based on MWCNTs-βCD
modified screen-printed carbon electrode. Due to the very high effective
surface and excellent electrochemical behavior of MWCNTs as well as
host-guest interaction capability of βCD, the sensor exhibited out-
standing oxidation activity toward BPA sensing. The chemically mixed
MWCNTs-βCD modified electrode performed better than the physically
mixed MWCNTs-βCD modified electrode. The sensor offered a low limit
of detection of 13.76 nM. Comparing with the BPA level in real water,
the sensor provided a wide two–step linear response ranges from 0.125
to 2 μM and 2 to 30 μM. Finally, our sensor was successfully tested to
determine the BPA level in lake and tap water, which show excellent
recoveries of 97.8%–108.7%. The sensor provided excellent stability,
reproducibility and high selectivity towards BPA detection even in the
presence of interference species. Therefore, this sensor may be a good
choice for low-cost rapid sensing of BPA in real water.
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