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GRAPHICAL ABSTRACT

e A review of analytical methods for
the assessment of EDCs exposure
during the first stages of the human
life is developed.

e Placenta, cord blood, meconium,
amniotic fluid, breast milk, blood and
urine are the studied samples.

e The work is focused on four EDCs
families: BPA, phthalates, UV-filters
and parabens.

e The work mainly focused on sample
preparation and the analytical tech-
niques used.

e Assessment of exposure to EDCs
during first stages of life will help to
prevent future health issues.
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In the present work, a review of the analytical methods developed in the last 15 years for the deter-
mination of endocrine disrupting chemicals (EDCs) in human samples related with children, including
placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed.
Children are highly vulnerable to toxic chemicals in the environment. Among these environmental
contaminants to which children are at risk of exposure are EDCs —substances able to alter the normal
hormone function of wildlife and humans—. The work focuses mainly on sample preparation and
instrumental techniques used for the detection and quantification of the analytes. The sample prepa-
ration techniques include, not only liquid—liquid extraction (LLE) and solid-phase extraction (SPE), but
also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs),
stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive
liquid—liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted
extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies
focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment.
The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography
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(GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the
determination of several families of EDCs with one extraction step and limited sample preparation.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Endocrine disrupting chemicals (EDCs) are a group of natural
and synthetic chemicals that may interfere with the normal func-
tion of the endocrine system in animals and humans [1]. EDCs can
act during fetal development, infancy, early childhood, puberty,
adulthood and old age. In humans, the timing of EDC action often
determines the strength of the impact. In adults the EDC has an
effect when it is present, but when the EDC is withdrawn, the effect
diminishes [2]. In contrast, exposure to EDCs during development
(in utero, infancy and early childhood) can have permanent effects if
the exposure occurs during the period when a specific tissue is
developing. These effects may only become visible decades later.
This is called “developmental programming” [3].

Hormones control the normal development of tissues from the
fertilized sperm and egg to the fully developed fetus. Since some
tissues continue developing after birth —like the brain and repro-
ductive system— the sensitive period for these tissues is extended,
sometimes for decades after birth. When a tissue is developing, it is
more sensitive to the action of hormones and thus EDCs. Moreover,
children's metabolic pathways, especially in the first months after
birth, are immature. This means that children's ability to metabo-
lize and excrete EDCs is lower than that of adults', making them
more vulnerable to these chemicals [4].

The mechanisms through which EDC exposure during devel-
opment can alter the development of specific tissues, leading to
increased susceptibility to diseases later in life, are just beginning to
be understood. It is clear that hormones play an important role in
cell differentiation, which leads to the development of tissues and
organs. Once tissues and organs are fully developed and active,
then hormones have a different role: to control the integration of
signals between tissues and organ systems and to maintain normal
function. Early development (when hormones are controlling cell
changes to form tissues and organs) is thus a very sensitive time
frame for EDCs action. If an EDC is present during the develop-
mental programming of a tissue, it could disrupt the normal hor-
mone levels, leading to changes in tissue development-changes

that would be stable across the lifetime and possibly confer
sensitivity to disease later in life. These effects are not likely to be
evident at birth, but may show up only later in life, from a few
months to decades later [1]. The most prominent and well docu-
mented health concerns from exposure to endocrine disruptors are
reproductive and developmental effects. Some of the disorders that
have been seen in animal studies include oligospermia (low sperm
count), testicular cancer, and prostate hyperplasia in adult males;
vaginal adenocarcinoma, disorders of ovulation, breast cancer, and
uterine fibroids in adult females. Disruption to thyroid functions,
obesity, bone metabolism and diabetes are also linked to exposure
endocrine disruptors [5—10].

In addition, children have greater exposure to EDCs for their
body weight than adults. Children inhale four times more air,
consume between six to eight times more calories and drink
fourteen times more water per kilogram than an average adult.
These differences result in children being exposed to greater
burden of toxic chemicals from air, food and water [11].

Besides some naturally occurring compounds (lignans, coume-
stans, isoflavones, mycotoxins), numerous synthetic chemicals like
bisphenol A (BPA) and its chlorinated derivatives, phthalates,
organic UV-filters and parabens (PBs) have been implicated in
endocrine disruption. The widespread use of these compounds and
their potential risk to human health, have prompted interest in
assessing human exposure [1,12—20], with special attention to
children's exposure. Exposure may occur through inhalation,
dermal contact or ingestion [1,11,12,18] and the metabolism may
differ depending upon the exposure route and specific chemical
structure characteristics [4,21,22]. Xenobiotics metabolism in
humans is often divided into three phases: modification (phase I),
conjugation (phase II), and further modification and excretion
(phase III). These reactions act in concert to detoxify and remove
these compounds from cells. In phase I, a variety of enzymes act to
introduce reactive and polar groups into their substrates. Phase [
reactions may occur by oxidation, reduction, hydrolysis, cyclization
and decyclization, carried out by mixed function oxidases, often in
the liver. If the metabolites of phase I reactions are sufficiently
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polar, they may be readily excreted at this point. However, many
products originated in phase I, are not eliminated rapidly and un-
dergo a subsequent reaction in which an endogenous substrate
combines with the newly incorporated functional group to form a
highly polar conjugate. In subsequent phase II reactions, these
activated xenobiotic metabolites are conjugated with charged
species such as glutathione, sulfate, glycine or glucuronic acid. Sites
on EDCs where conjugation reactions occur include carboxyl
(—COOH), hydroxyl (—OH), amino (—NH3), and sulfhydryl (—SH)
groups. Products of conjugation reactions increase molecular
weight and tend to be less active than their substrates, unlike phase
I reactions, which often produce active metabolites. After phase II
reactions, the conjugates may be further metabolized, and conju-
gates and their metabolites can be excreted from cells in phase III
[4,21,22].

It has been postulated that free forms of EDCs can accumulate in
certain human tissues due to their lipophilic nature producing
harmful disrupting effects and passing to the offspring via placenta
or breast milk [23—27]. In this context, it is particularly important
to develop strategies for the study of this type of exposure and
sensitive analytical methods that will allow the monitoring of EDCs
in samples such as placenta, cord blood, breast milk, amniotic fluid,
and urine and blood of pregnant women and their children. Due to
the complexity of these matrices and the low concentration levels
of EDCs, it is paramount to optimize new sample treatment pro-
cedures. Sample clean-up to remove the interference of matrix
components in the analysis and stages for concentration of analytes
are required to achieve a selective and sensitive determination of
EDCs in human samples. The validation of single methods for
multiresidue analysis of different families of those compounds is
highly recommended, since this would reduce the overall analysis
time, field sampling and total costs. Moreover, comprehensive in-
formation about multiple types of EDCs is required for risk
assessment studies, as chemicals may interact to yield synergic
toxicity effects on exposed organisms [4,11,12,18,28].

Some reviews have been published regarding analytical
methods used for the determination of endocrine disrupting
chemicals in the last years [29—33]. However, they tend to be
focused in a specific family of compounds [29—31], do not focus in
human matrix related with children [32] or do not study the wide
range of compounds covered by this review [33]. In this context, the
aim of the present review is to provide a comprehensive overview
of the analytical methods developed in the last 15 years and applied
in assessing EDCs exposure in children by means of the determi-
nation of BPA, PBs, organic UV-filters and phthalates in samples
such as placenta, cord blood, amniotic fluid, breast milk and urine
and blood of pregnant women and their children. The work
particularly focuses on sample preparation and the instrumental
techniques used for the determination of selected compounds.

2. Endocrine disrupting chemicals

The EDCs selected for review in the present work included
bisphenol A and its chlorinated derivatives, phthalates, organic UV-
filters and parabens. These compounds were chosen based on
production/usage and potential hormonal activity.

2.1. Bisphenol A

BPA is the raw material used in the manufacturing of epoxy
resins and polysulfones. It is also applied as antioxidant or stabi-
lizer. However, the most important use of BPA is the production of
polycarbonate plastics for a great variety of applications such as
digital media (CDs, DVDs), electrical and electronic equipment,
automobiles, sports safety equipment, reusable food and drink

containers, infant feeding bottles, tableware, dummies, and medi-
cal devices among other uses [34]. Moreover, when BPA is present
in treated waters, it may react with the residual chlorine originally
used as disinfectant, and depending on the pH of the medium,
produce chlorinated BPA derivatives [35]. Humans are exposed to
BPA through the diet, inhalation of household dust, and dermal
exposure [12,15].

Many studies on humans have shown that BPA exposure in
adults may be associated with higher risk of sexual dysfunction,
altered immune function, changes in levels of thyroid hormones,
higher incidence of type-2 diabetes, cardiovascular disease, altered
liver function and obesity [19]. Furthermore, exposure to BPA in
early pregnancy may increase the risk of miscarriage, altered
gestation length, low birth weight, increased male genital abnor-
malities and childhood obesity. Particularly relevant is the associ-
ation between early BPA exposure and altered behavior and
disrupted neurodevelopment in children (attention-deficit/hyper-
activity disorder, depression, and anxiety) and the higher risk of
wheeze and asthma [19].

2.2. Phthalates

The diesters of phthalic acid, known as phthalates, are industrial
chemicals mainly used as plasticizers (substances added to plastics
to increase their flexibility, transparency, durability, and longevity).
In addition, they are used in a large variety of products, such as
enteric of pharmaceutical pills, food packaging, adhesives and
glues, medical devices, toys, personal care products or in medical
applications such as catheters and blood transfusion devices.
Phthalates are also found in lubricating oils, solvents, and de-
tergents. The most common phthalates are diethylhexylphthalate
(DEHP), diisononylphthalate (DINP), butylbenzylphthalate (BBP)
and diethylphthalate (DEP). Exposure assessment to phthalates is
difficult because of their extensive use and their ubiquitous pres-
ence in the environment.

Given that all phthalates are rapidly metabolized by cleavage of
one or both of the two ester groups, metabolites like the primary
monoesters are the obvious choice for analysis. However, even
determination of those metabolites is susceptible to contamination,
since they might be generated out of the parent diesters by various
processes besides human metabolism, like chemical, enzymatic,
microbiological, or photolytic hydrolysis. To definitely rule out
contamination, some authors have focused on determining sec-
ondary metabolites generated in human metabolism by w-1-
oxidation of the monoester alkyl chain, such as mono(2-ethyl-5-
hydroxyhexyl)phthalate (5-OH-MEHP) and mono(2-ethyl-5-oxo-
hexyl)phthalate (50xo-MEHP) [36,37].

Phthalate exposure is associated with adverse health effects,
including respiratory effects, sexual dysfunctions or increased
incidence of developmental abnormalities such as cleft palate and
skeletal malformations. The most sensitive system is the immature
male reproductive tract, with phthalate exposure resulting in
increased incidence of cryptorquidism, decreased testes weight,
decreased anogenital distance (distance between the anus and the
base of the penis), and increased waist circumference and insulin
resistance [24,36,38].

2.3. Organic UV-filters

Organic UV-filters are often used to protect skin against UV
radiation damage. They are components of many daily used
products such as cosmetics, skin creams, body lotions, hair
sprays, hair dyes, shampoos and sunscreen, as well as in non-
cosmetic products, such as carpets, furniture, clothing and
washing powder. Here, the UV-filters are used to protect the



Table 1

Analytical methods for EDCs determination in urine in a perinatal stage.

Analytes Sample treatment Analytical LOD Comments Ref
technique
BPA, BP-3, MPB, EPB, PPB, BPB, 11 - Enzymatic LC-MS/ 0.2 Total content (1.1—-1280 ng mL~!, 100%) [40]
phthalate metabolites, 3 hydrolysis MS(APCI-) —1.2ng mL™! Pregnant women and children
chlorophenols (B-glucuronidase)
- On-line SPE (C18)
BPA - Enzymatic LC-MS/ 03 ngmL~!  Free (<LOQ—0.7 ng mL™', 16%) and total content (0.3—50.5 ng mL~!, [41]
hydrolysis MS(APCI-) 100%)
(B-glucuronidase) Correlation between urinary concentrations mothers/children
- Column switching
MPB, PPB, BPB - Enzymatic LC-MS/MS 0.1 Total content, expressed as sum of PBs (LOD—23,200 ng mL~!, 97%)  [42]
hydrolysis (APCI-) —0.2ngmL~' Concentrations were lower during pregnancy than before pregnancy
(B-glucuronidase)
- On-line SPE (C18)
BPA - Enzymatic LC-MS/MS 0.1 ngmL~'  Total content (0.1—122.8 ng mL~', 99%) [43]
hydrolysis (ESI Negative correlation between urinary concentration and age of the
(B-glucuronidase) pregnant women
- Clean-up
(multimode SPE
cartridges)
BPA, MPB, EPB, PPB, BP-3, phthalates - Enzymatic LC-MS/MS 0.01 Total content (LOD—822 ng mL~', 93%, BPA; LOD—955 ng mL~', 90%, [44]
metabolites hydrolysis (ESI-) —1.14 ng mL~! PBs; LOD—2442 ng mL~"', 98%, BP-3)
(B-glucuronidase) Correlation between concentrations in mothers and children
- Automated SPE
(C18)
MPB, EPB, PPB, BPB - Enzymatic LC-MS/MS 0.1 Total content (LOD—475 ng mL~!, 98%) [45]
hydrolysis (APCI-) —02ngmL™' Pregnant women exposure to PBs. Relationship with concentration in
(B-glucuronidase) newborn infants
- On-line SPE (C18)
BPA, BP-3, MPB, PPB, BPB, triclosan, - Enzymatic LC-MS/MS 0.1 Total content (LOD—97.4 ng mL~, 97%, BPA; LOD—6040 ng mL ™", 100%, [46]
chlorophenols hydrolysis (APCI-) —2.0 ng mL~! PBs; 11.5-39700 ng mL~', 100%, BP-3)
(B-glucuronidase) Pregnant women
- On-line SPE(C18)
BPA - Enzymatic LC-MS/MS 0.3 ng mL~!  Total content (LOD—63.2 ng mL™", 82.1%) [47]
hydrolysis (APCI-) Pregnant women
(B-glucuronidase)
- On-line SPE(C18)
MPB, EPB, PPB, BPB - Enzymatic LC-MS/MS 0.5 Total content (LOD—5380 ng mL~!, 94%) [48]
hydrolysis (ESI-) —0.6ngmL~' Pregnant women
(B-glucuronidase)
- Automated SPE
(C18)
Phthalate metabolites - Enzymatic LC-MS/MS 0.5 Total content (LOD—761 ng mL™!, 90%) [49]
hydrolysis (APCI-) —3.0ng mL~! Women after the delivery
(B-glucuronidase)
- Automated SPE
(Oasis HLB)
BPA - Enzymatic LC-MS/MS 0.4 ngmL~'  Total content (LOQ—61 ng mL~"', 100%) [50]
hydrolysis (APPI-) Newborns in a neonatal intensive care unit. Positive correlation
(B-glucuronidase) between the use of medical devices and urinary concentration.
- On-line SPE (C18)
BPA - Enzymatic LC-MS/MS 03 ngmL~'  Free (LOD—1.5 ng mL~!, 28%) and total content (LOD—50.9 ng mL~", [51]
hydrolysis (APPI-) 93%). 3—15 months infant population.
(B-glucuronidase)
- On-line SPE (C18)
BPA - Enzymatic GC-MS/MS 03 ngmL~'  Total content (LOD—9.4 ng mL~', 60%). 1 month infant population. [52]
hydrolysis (NICI)

(B-glucuronidase)
Protein
precipitation
(MeCN)

- LLE
(1-chlorobutane)
Derivatization
(PFBBr)

Abbreviations: (OH)3-BP, trihydroxybenzophenone; 2-OH-BP, 2-hydroxybenzophenone; 3-OH-BP, 3-hydroxybenzophenone; 4-OH-BP, 4-hydroxybenzophenone; BP,
benzophenone; BP-1, benzophenone 1; BP-10, benzophenone 10; BP-3, benzophenone 3; BP-8, benzophenone 8; BPA, bisphenol A; BPB, butylparaben; BP-OH, hydrox-
ybenzophenone; BPP, benzylbutylphthalate; BPS, bisphenol S; BSTFA, N,O-bis(trimethylsilyl)trifluoroacetamide; BzPB, benzylparaben; CE-UV, capillary electrophoresis-
ultraviolet detection; cLC-MS, capillary liquid chromatography-mass spectrometry; cLC-UV, capillary liquid chromatography-ultraviolet detection; Cls-BPA, bisphenol A
chlorinated derivatives; DBP, dibutylphthalate; DEP, bis(2-ethyl hexyl)phthalate; DLLME, dispersive liquid—liquid microextraction; El, electron impact; EPB, ethylparaben; ESI,
electrospray ionization; GC-MS, gas chromatography-mass spectrometry; GC-NCI-MS, gas chromatography-negative chemical ionization-mass spectrometry; LC-ECD, liquid
chromatography-electrochemical detection; LC-FLD, liquid chromatography-fluorescence detection; LC-MS, liquid chromatography-mass spectrometry; LC-MS/MS, liquid
chromatography-tandem mass spectrometry; LC-UV, liquid chromatography-ultraviolet detection; LLE, liquid—liquid extraction; MeCN, acetonitrile; MeOH, methanol; MEP,
monoethylphthalate; MIP-SPME, molecularly imprinted polymer-solid phase microextraction; MMP, monomethylphthalate; MPB, methylparaben; PBs, parabens; PFBBr,
pentafluorobenzylbromide; p-HB, para-hydroxybenzoic acid; p-NBCl, para-nitrobenzoyl chloride; PPB, propylparaben; SBSE, stir bar sorptive extraction; SPE, solid-phase
extraction; SPME, solid-phase microextraction; TD-GC-MS, thermal desorption-gas chromatography-mass spectrometry; THF, tetrahydrofuran; TMSDM, trimethylsilyl
diazomethane; UAEM-SFO, ultrasound assisted emulsification microextraction-solidification of floating organic droplet; UHPLC-MS/MS, ultra high performance liquid

chromatography-mass spectrometry.
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Analytes

Sample treatment

Analytical LOD
technique

Comments

Ref

BP-3, BP-1, BP-8

BPA

BPA

BPA

BPA, 6 alkylphenols

BPA

BPA, nonylphenol, estrogenic
hormones

16 Phthalate metabolites

BPA, alkylphenols,
chlorophenols

BPA, 3 phytoestrogens
BPA, BP-3, triclosan, 6
chlorophenols

MPB, EPB, PPB, BPB, BzPB

BPA

BP-3

BPA

DEP, DBP, MEP, MMP, BPP

BP, BP-OH, 2-OH-BP,
BP-3, BP-10

BPA

SPME (C18), direct fiber

immersion
Enzymatic hydrolysis
(B-glucuronidase)
SPE (C18)
Derivatization (PFBBr)
Enzymatic hydrolysis
(B-glucuronidase)
LLE (diethyl eter)
Enzymatic hydrolysis
(B-glucuronidase)
Column switching
extraction system
Direct sample injection
Enzymatic hydrolysis
(B-glucuronidase)
Automated
SPE/derivatization

in situ (PFBBr)
Enzymatic hydrolysis
(B-glucuronidase)
SPE (C18)
Derivatization (PFBBr)
Clean-up (Florisil)
Acid hydrolysis (HCI)
SPE (ENVI-C18)
Derivatization (p-NBCI)
Automated sample
preparation
Enzymatic hydrolysis
(B-glucuronidase)
On-line SPE
Enzymatic hydrolysis
(B-glucuronidase)
Protein precipitation
(MeCN)
SBSE/derivatization
(acetic acid
anhydride)
Enzymatic hydrolysis
(B-glucuronidase)
SPE (C18)

Enzymatic hydrolysis
(B-glucuronidase)
On-line SPE (C18)
Enzymatic hydrolysis
(B-glucuronidase)
On-line SPE (C18)
Enzymatic hydrolysis
onto sol—gel column
Inmunoaffinity
extraction

columns

Single Drop
Microextraction

with ionic liquid
Enzymatic hydrolysis
(B-glucuronidase)
Coacervative
microextraction:
decanoic acid + THF
Directly injected of
extract

Enzymatic hydrolysis
(B-glucuronidase)
Automated SPE
(Strata XL)
Enzymatic hydrolysis
(B-glucuronidase)
Dilution with water
SBSE

Enzymatic hydrolysis
(B-glucuronidase)
HF-LPME (toluene)

GC-MS (EI) 5—10 ng mL™!

GC-NCI-MS 0.1 ng mL™!

LC-ECD 02 ngmL™!

LC-MS (ESI) 0.1 ng mL™"

GC-NCI-MS 0.1 ng mL~! (BPA)

0.1-0.7 ng mL™!
(alkylphenols)

GC-NCI-MS 0.1 ng mL™!

LC-FLD 2.7-83ng mL!

LC-MS/MS 0.15—4.30 ng mL~"
(ESI-)

TD-GC-MS 0.01-0.05 ng mL™!
(ED)

LC-ECD 0.2-0.5 ng mL™!
LC-MS/MS 0.1-2.0 ng mL™!
(APCI-)

LC-MS/MS 0.1-0.2 ng mL~!
(APCI-)

LC-FLD 0.2 ng mL™!

LC-UV 1.3 ng mL™"

LC-FLD 7.5 ng mL™!

LC-MS/MS 0.1-0.5 ng mL~!
(ESI-)

TD-GC-MS 0.05—0.1 ng mL~!
(ED)

GC-MS (EI) 0.02 ng mL™'

Free content (<LOQ)

BP-3 and BP-1 were found after a topical application of a sunscreen
Free (<LOD) and total content (0.11—0.50 ng mL~", 100%)

Free (<LOD) and total content (0.2—19.1 ng mL~"', 100%)

Total content (0.26—0.38 ng mL~!, 50%)

Total content (0.4—21.1 ng mL~!, 96%, BPA)

Total content (0.2—3.8 ng mL™!, 100%)

Total content (<LOD—3.95 ng mL~", 80%, BPA)

Total content (<LOD—1730 ng mL™ 1)
8 of the analytes were quantified in 100% of the samples

Total content (0.93—5.41 ng mL~', 80%, BPA)

Total content (LOD—2.24 ng mL~!, 52%, BPA)

Total content (LOD—11.5 ng mL~!, 87%, BPA; 6.8—2120 ng mL™ !,

100%, BP-3)

(53]

(54]

(55]

(56]

[57]

(58]

[59]

(60]

(61]

(62]

(63]

Free (LOD—10.9 ng mL™"', 64%) and total content (0.3—726 ng mL™"', [64]

100%)
BzPB was not detected

Free (0.2—1.2 ng mL~!, 80%) and total content (0.2—5.6 ng mL™!,

100%)

Free content

Quantification of BP-3 after topical application of a sunscreen cream

Total content (4.0—49 ng mL~"', 100%)

Total content (0.1-13.8 ng mL™")
Elevated occurrence of MEP and MMP after topical application

Total content

Low concentrations for all the analytes

Total content (0.1-0.4 ng mL~"', 100%)
Only three analyzed samples

(65]

(66]

(67]

(68]

(69]

[70]

(continued on next page)
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Analytes Sample treatment Analytical LOD Comments Ref
technique
- Derivatization (acetic
acid anhydride)
BPA, triclosan - Enzymatic hydrolysis GC-ECNI- 0.2 ng mL™! Total content (0.58—5.20 ng mL~!, 100%, BPA) [71]
(B-glucuronidase) MS (EI) 0.05 ng mL™!
- SPE (C18)
- Derivatization (PFBCl)
- Clean-up (acid silica)
BP, BP-OH, 2-OH-BP, 3-OH-BP, - Enzymatic hydrolysis GC-MS (EI) 0.01-0.05 ng mL~! Total content (0.36—4.91 ng mL~!,100%, BP-3; 0.27—10.0 ng mL~!, [72]
4-OH-BP, BP-1, BP-3, BP-10 (B-glucuronidase) 100%, BP-OH)
- Derivatization (acetic
acid anhydride)
- HF-LPME (toluene)
BPA - MIP-SPME LC-UV 7.6 ng mL™! Free content [73]
- Chemical desorption Application of the procedure in spiked pool urine
(MeOH, 5% acetic acid)
MPB, EPB, PPB, BPB - Enzymatic hydrolysis LC-MS/MS  0.1-0.2 ng mL™! Total content (0.3—1110 ng mL~', 100%) [74]
(B-glucuronidase) (APCI-) Study by sex, age and race/ethnicity
- On-line SPE (C18)
BPA, bisphenol B - Enzymatic hydrolysis GC-MS (EI) 0.03 ng mL™’ Free (0.47—1.64 ng mL™', 45%) and total content (0.39 [75]
(B-glucuronidase) —4.99 ng mL™', 85%)
- DLLME (MeCN—Cl4C) Bisphenol B was rarely detected
- Derivatization (acetic
acid anhydride)
BP-1, BP-2, BP-3, BP-8, - Enzymatic hydrolysis LC-MS/MS 0.05-0.15 ng mL™! Total content (0.33—330.0 ng mL~", 100%) [76]
4-OH-BP (B-glucuronidase) (ESI-) Users of sunscreen products have very high levels of BP-3 and BP-1
- LLE (ethyl acetate)
BP-3, BP-4 - On-line SPE (amino) LC-UV 30 ng mL™! Free content [77]
Excretion study from topical application throughout 48 h
BP-1, BP-3, BP-8, (OH)s-BP - Enzymatic hydrolysis LC-MS/MS 0.03-0.10 ng mL~! Free and total content [78]
(B-glucuronidase) (ESI+) Occurrence study after BP-3 topical application on one volunteer
- SPE (C18)

MPB, PPB, BPB, BP-3, BPA, - Enzymatic hydrolysis LC-MS/MS  0.1-0.5 ng mL™! Total content (1.8—320.0 ng mL~"', 100%) [79]
phthalate metabolites, (B-glucuronidase) (APCI-) Correlations between urinary concentrations and earlier pubertal
phytoestrogens - On-line SPE (C18) stages in girls

BPA - Enzymatic hydrolysis ~ LC-MS/MS 0.3 ng mL~! Total content (0.4—211 ng mL™", 95%) [80]

(B-glucuronidase) (APCI-) Correlations between dietary intake of BPA and urinary excretion in
- On-line SPE (C18) children
MPB, EPB, PPB, BPB, BzPB - Enzymatic hydrolysis LC-MS/ 0.02—0.36 ng mL~! Total content (LOD—2002 ng mL~', 98%) [81]
(B-glucuronidase) MS(ESI-) Correlations between seminal contents and urine concentrations
- Automated SPE
(C18) system
BPA - Dilution (water) CE-UV 84 ng mL~! Free content [82]
- MIP-SPE
BPA, nonylphenol, - Enzymatic hydrolysis UHPLC- 0.10-0.15 ng mL~! Total content (0.43—5.41 ng mL~", 15%, BPA) [83]
octylphenol (B-glucuronidase) MS/
- SPE (C18) MS(ESI-)
BPA, 5 phthalate metabolites - Enzymatic hydrolysis LC-MS/ 0.1-1.0 ng mL™! Total content (>LOD—11.2 ng mL™!, 100%, BPA) [84]
(B-glucuronidase) MS(ESI-) MEP (median: 43.7 ng mL™')
- SPE (C18) MPB (median: 10.2 ng mL™")
BPA - Enzymatic hydrolysis ~ LC-MS/ 0.2 ng mL™! Total content (0.2—42 ng mL~!, 70%) [85]
(B-glucuronidase) MS(APCI-)
- Automated SPE (C18)
BPA, Cl,-BPA - LLE (ethyl acetate) LC-MS/MS 0.01-0.05 ng mL~! Free (LOD—0.2 ng mL~!, 15%) and total content (0.3—50.5 ng mL™!, [86]
(BPA and Clx-BPA free)  (ESI-) 100%) of BPA. Free content of Cl,-BPA (LOD—0.6 ng mL™"', 20%).
- SPE (amino)
(conjugates)
BPA, triclosan, chlorophenols - Dilution with water CE-UV 1.0-2.0 ng mL™! Free content (<LOD, 100%, BPA) [87]
- UAEM-SFO (dodecanol)

BPA, BP-3, triclosan, - Enzymatic hydrolysis LC-MS/MS 0.06-0.13 ng mL™! Total content (LOD—24.3 ng mL~!, 82.9%, BPA; LOD—162.0 ng mL~", [88]

chlorophenols (B-glucuronidase) (APCI-) 98.4%, BP-3)
- Column switching Higher BPA exposure in infants (6—11 years old) than teenagers (11
—16) and adults (17—21)
MPB, EPB, PPB, BPB, BzPB - Enzymatic hydrolysis LC-MS/MS 0.01-0.02 ng mL~! Total content (0.35—608 ng mL™", 100%) [89]
(B-glucuronidase) (APCI-) Remarkable exposure for young women
- SPE (Elut-Nexus)
MMP, MBP, MEP, - Enzymatic hydrolysis ~ GC-MS (EI) 0.02—0.05 ng mL~' Total content (LOD—40.3 ng mL™', 91.6%) [90]
MEHP, MBzP (B-glucuronidase)
- Magnetic SPE
BPA - Enzymatic hydrolysis LC-MS/MS  0.10 ng mL™’ Total content (LOD—8.70 ng mL~", 96%) [91]
(B-glucuronidase) (ESI-) Higher concentrations in adults
- LLE (ethyl acetate)

BPA, 11 phthalate metabolites, - Enzymatic hydrolysis UHPLC- 0.10-1.87 ng mL~! Total content (median: 0.64 ng mL~', 96.7%, BPA; medians: 0.89  [92]
endogenous steroid (B-glucuronidase) MS/MS —81.8 ng mL™', 100%, phthalates)
compounds - SPE (Oasis MAX) (ESI+)
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Table 2 (continued )

Analytes Sample treatment Analytical LOD Comments Ref
technique
- Derivatization
(Dansylation)
MPB, EPB, PPB, BPB, BzPB, p-HB - Enzymatic hydrolysis ~ LC-MS/MS 0.03—0.20 ng mL™! Free (LOD—10.6 ng mL™!, 83%) and total content (3.79 [93]
(B-glucuronidase) (ESI-) —4870 ng mL~', 100%), expressed as sum of PBs
- LLE (ethyl acetate) Remarkable occurrence of PPB and MPB in adults and children
DPHP and metabolites - Enzymatic hydrolysis LC-MS/MS  0.2—0.5 ng mL~! Total content [94]
(B-glucuronidase) (ESI-) Excretion study after oral dosage of bis(2-propylheptyl)phthalate
- LLE (tert-
butylmethylether)
BPA, Cl«-BPA, BPS, MPB, EPB, - Enzymatic hydrolysis UHPLC- 0.03—0.20 ng mL™! Free and total content (1.5—39.0 ng mL™!, 30%, BPA; 0.9 [95]
PPB, BPB, BP-1, BP-2, BP-3, (B-glucuronidase) MS/ —346.0 ng mL~', 100%, PBs; 0.6—44.0 ng mL~!, 95%, BPs)
BP-6, BP-8, 4-OH-BP - DLLME (acetone/ClsCH) MS(ESI+/-) Gender differences of exposure to PBs
BPA, BPS, MPB, EPB, PPB, BPB, - Enzymatic hydrolysis GC-MS/MS 0.04—0.20 ng mL~! Free and total content (0.5—46.0 ng mL~", 45%, BPA; 1.0 [96]
IsPPB, IsBPB, BP-1, BP-2, BP-3,  (f-glucuronidase) (EI) —1171 ng mL™!, 100%, PBs; 0.3—99.0 ng mL™!, 90%, BPs)
BP-6, BP-8, 4-OH-BP - DLLME (acetone/Cl3CH)
- Derivatization (BSTFA)
BPA, Cl-BPA - LLE (MeCN) UHPLC- Free content (LOD—1.4 ng mL~!, 50%, BPA; LOD—1.5 ng mL™!, 30%, [97]
MS/MS Clx-BPA).
(ESI-)
9 Phthalate metabolites - Enzymatic hydrolysis GC-MS (EI) 0.03—4.15 ng mL~" Total content (LOD—605 ng mL~", 100%) [98]
(B-glucuronidase) UHPLC- 0.08—0.49 ng mL™"
- LLE (hexane)/ MS/MS
derivatization (ESI-)
(TMSDM)/clean-up
(Florisil) before GC
analysis
- SPE (C18) before LC
analysis
MPB, EPB, PPB, BPB - Enzymatic hydrolysis ~ cLC-UV 7.0-9.0ng mL~!  Total content (68.0—867.0 ng mL™'; 100%). [99]
(B-glucuronidase) cLC-MS 11.0-22.0 ng mL~! No occurrence of BPB

- DLLME (acetone/Cl;CH)

Abbreviations: (OH)3-BP, trihydroxybenzophenone; 2-OH-BP, 2-hydroxybenzophenone; 3-OH-BP, 3-hydroxybenzophenone; 4-OH-BP, 4-hydroxybenzophenone; BP,
benzophenone; BP-1, benzophenone 1; BP-10, benzophenone 10; BP-3, benzophenone 3; BP-8, benzophenone 8; BPA, bisphenol A; BPB, butylparaben; BP-OH, hydrox-
ybenzophenone; BPP, benzylbutylphthalate; BPS, bisphenol S; BSTFA, N,0-bis(trimethylsilyl)trifluoroacetamide; BzPB, benzylparaben; CE-UV, capillary electrophoresis-
ultraviolet detection; cLC-MS, capillary liquid chromatography-mass spectrometry; cLC-UV, capillary liquid chromatography-ultraviolet detection; Clx-BPA, bisphenol A
chlorinated derivatives; DBP, dibutylphthalate; DEP, bis(2-ethylhexyl)phthalate; DLLME, dispersive liquid—liquid microextraction; EI, electron impact; EPB, ethylparaben; ESI,
electrospray ionization; GC-MS, gas chromatography-mass spectrometry; GC-NCI-MS, gas chromatography-negative chemical ionization-mass spectrometry; LC-ECD, liquid
chromatography-electrochemical detection; LC-FLD, liquid chromatography-fluorescence detection; LC-MS, liquid chromatography-mass spectrometry; LC-MS/MS, liquid
chromatography-tandem mass spectrometry; LC-UV, liquid chromatography-ultraviolet detection; LLE, liquid—liquid extraction; MeCN, acetonitrile; MeOH, methanol; MEP,
monoethylphthalate; MIP-SPME, molecularly imprinted polymer-solid phase microextraction; MMP, monomethylphthalate; MPB, methylparaben; PBs, parabens; PFBBr,
pentafluorobenzylbromide; p-HB, para-hydroxybenzoic acid; p-NBCl, para-nitrobenzoyl chloride; PPB, propylparaben; SBSE, stir bar sorptive extraction; SPE, solid-phase
extraction; SPME, solid-phase microextraction; TD-GC-MS, thermal desorption-gas chromatography-mass spectrometry; THF, tetrahydrofuran; TMSDM, trimethylsilyl
diazomethane; UAEM-SFO, ultrasound assisted emulsification microextraction-solidification of floating organic droplet; UHPLC-MS/MS, ultra high performance liquid
chromatography-mass spectrometry.

Table 3
Analytical methods for EDCs determination in serum in a perinatal stage.
Analytes Sample treatment Analytical technique LOD Comments Ref
BPA - SPE (C18) ELISA 0.2 ng mL™" Total content (0.60—14.36 ng mL~", 100%) [100]
Maternal serum and amniotic fluid
BPA - Acid hydrolysis (HCI) LC-FLD 0.04 ng mL™! Total content (0.21-0.76 ng mL~', 100%) [101]
- Column switching system Serum level and ascetic fluid
BPA - Enzymatic hydrolysis (8-glucuronidase) GC-MS/MS 0.03 ng mL~! Total content (LOD—10.4 ng mL~!, 67%)  [102]
- LLE (Cl,CH3) Pregnancy women

- SPE (Florisil-C18)
- Derivatization (MSTFA)
5 Phthalates and their metabolites - LLE (pentane/acetone) GC-MS 0.13—1.4 ng mL~" Total content (0.05—129 ng mL™!, 70%) [49]
LLE (hexane/MTBE) Women after delivery
Enzymatic hydrolysis (-glucuronidase)
Automated SPE (Oasis HLB)

Abbreviations: 4-OH-BP, 4-hydroxybenzophenone; BP, benzophenone; BP-1, benzophenone 1; BP-10, benzophenone 10; BP-2, benzophenone 2; BP-3, benzophenone 3; BP-6,
benzophenone 6; BP-8, benzophenone 8; BPA, bisphenol A; BPB, butylparaben; BPP, benzylbutylphthalate; BzPB, benzylparaben; cLC-MS, capillary liquid chromatography-
mass spectrometry; cLC-UV, capillary liquid chromatography-ultraviolet detection; DBP, dibutylphthalate; DEP, bis(2-ethylhexyl)phthalate; DLLME, dispersive liquid—liquid
microextraction; EI, electron impact; EPB, ethylparaben; ESI, electrospray ionization; GC-MS, gas chromatography-mass spectrometry; GC-NCI-MS, gas chromatography-
negative chemical ionization-mass spectrometry; LC-ECD, liquid chromatography-electrochemical detection; LC-FLD, liquid chromatography-fluorescence detection; LC-
MS, liquid chromatography-mass spectrometry; LC-MS/MS, liquid chromatography-tandem mass spectrometry; LC-UV, liquid chromatography-ultraviolet detection; LLE,
liquid—liquid extraction; MeCN, acetonitrile; MeOH, methanol; MEP, monoethylphthalate; MMP, monomethylphthalate; MPB, methylparaben; MSTFA, N-Methyl-N-(tri-
methylsilyl) trifluoroacetamide; PBs, parabens; PFBBr, pentafluorobenzylbromide; PFPA, pentafluoropropionic anhydride; PPB, propylparaben; SPE, solid-phase extraction;
SPME, solid-phase microextraction.
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Table 4
Analytical methods for EDCs determination in serum.
Analytes Sample treatment Analytical LOD Comments Ref
technique
BPA - Acid hydrolysis LC-ECD 0.01 ng mL~! Total content [103]
- Protein removal (MeOH) Methodological study
- SPE (C18)
BPA - Protein removal GC-NCI-MS  0.005 ng mL~! Free Content (0.39—0.80 ng mL~"', 100%) [104]
(formic acid)
- SPE (C18)
- Derivatization (PFBBr)
DEHP, MEHP - Column switching system LC-MS 1.0 Free content [105]
(ESI+/-) —5.0ng mL~! None of them were detected

Protein denaturation

(fosforic acid) (ESI-)

- Enzymatic hydrolysis
(B-glucuronidase)

- SPE (Elut-Nexus)

Protein removal (MeCN) GC-MS (EI)

SPME (direct immersion)

Phthalate metabolites

DMP, DEP, DBP, BBP, DEHP, DOP

LC-MS/MS 0.6
—13ngmL~! Methodological study

Total content [106]

0.015 ng mL™! Total content [107]

Methodological study

DEHP, MEHP - Protein denaturation LC-MS/MS  42ngmL~'  Total content (5.7 ng mL™") [108]
- LLE (acetone) (ESI—/+) 1.5ngmL~'  Only MEHP in one of five samples
14 Phthalate metabolites - Enzymatic hydrolysis LC-MS/MS  0.32 Total content [109]

(B-glucuronidase) (ESI-)
- Automated SPE (C18)
BPA, triclosan, Brs-BPA - Protein removal/acid GC-NCI-MS  0.05

hydrolysis (formic acid)
- SPE (C18-Florisil)
Derivatization (PFPA)
Enzymatic hydrolysis
(B-glucuronidase)
On-line SPE (C18)
Acid hydrolysis (HCIO4) LC-MS/MS
LLE (MeCN) (ESI-)

BPA, BP-3, MPB, EPB, PPB, BPB,
BzPB, chlorophenols

LC-MS/MS 0.1
(APPI-)

BPA, bisphenol B

DMP, DEP, DBP, DEHP - SPE (Oasis MAX)

GC-MS (EI) 0.7

—1.33 ng mL™! Methodological study

Total content (0.20—1.77 ng mL~!, 70%, BPA) [110]

—0.3 ng mL™!

Total content (LOD—301 ng mL~!, 100%, PBs; BPA and BP-3 were  [111]

—1.1ng mL™! quantified in one of fifteen samples)

0.50 ng mL~! Total content (0.79—7.12 ng mL~", 25.9%, BPA; 0.88—11.94 ng mL~!, [112]

17.2%, bisphenol B)
Relationship BPA level/endometriosis
Total content (<LOD—342 ng mL~!) [113]

—4.5ng mL~! High occurrence of DBP and DEHP

MPB, EPB, PPB - Enzymatic hydrolysis
(B-glucuronidase)
Protein removal
(formic acid)
Automated SPE (C18)

(APCI-)

BPA and conjugates forms

SPE (amino) (conjugates) (ESI-)
Enzymatic hydrolysis (§- LC-MS/MS 0.1
glucuronidase) (ESI-)
- Protein removal
(acetone)
- DLLME (acetone/ClsCH)
4-OH-BP, BP-1, BP-2, BP-3, BP-6, - Enzymatic hydrolysis LC-MS/MS 0.1
BP-8 (B-glucuronidase) (ESI-)
- Protein removal
(acetone)
- DLLME (acetone/Cl3CH)
- Enzymatic hydrolysis
(B-glucuronidase)

MPB, EPB, PPB, BPB

MPB, EPB, PPB, BPB
cLC-MS

LC-MS/MS 0.2
—0.7ng mL~! Relationship MPB level and use of PCPs

LLE (ethyl acetate) (BPA) LC-MS/MS 0.01
—0.05 ng mL™! —0.121 ng mL~", 100%) of BPA

cLC-UV 7.0

Total content (1.0—142.7 ng mL~}, 30—63%, PBs) [114]

Free (0.020—0.100 ng mL~", 100%) and total content (0.036 [115]

Free (LOD—2.7 ng mL~"', 25%) and total content (0.9—29.9, 90%, MPB; [42]

—02ngmL! 0.8-5.4 ng mL', 50%, PPB)

Free (only detected) and total content (<LOQ—0.7 ng mL™"', 90%, BP- [116]

—0.3 ng mL~! 1;09-1.2 ng mL~", 40%, BP-3)

Total content (68.0—867.0 ng mL~'; 100%). [99]

—9.0ng mL~! No occurrence of BPB
- DLLME (acetone/Cl5CH) 11.0

—22.0 ng mL™"

Abbreviations: 4-OH-BP, 4-hydroxybenzophenone; BP, benzophenone; BP-1, benzophenone 1; BP-10, benzophenone 10; BP-2, benzophenone 2; BP-3, benzophenone 3; BP-6,
benzophenone 6; BP-8, benzophenone 8; BPA, bisphenol A; BPB, butylparaben; BPP, benzylbutylphthalate; BzPB, benzylparaben; cLC-MS, capillary liquid chromatography-
mass spectrometry; cLC-UV, capillary liquid chromatography-ultraviolet detection; DBP, dibutylphthalate; DEP, bis(2-ethylhexyl)phthalate; DLLME, dispersive liquid—liquid
microextraction; EI, electron impact; EPB, ethylparaben; ESI, electrospray ionization; GC-MS, gas chromatography-mass spectrometry; GC-NCI-MS, gas chromatography-
negative chemical ionization-mass spectrometry; LC-ECD, liquid chromatography-electrochemical detection; LC-FLD, liquid chromatography-fluorescence detection; LC-
MS, liquid chromatography-mass spectrometry; LC-MS/MS, liquid chromatography-tandem mass spectrometry; LC-UV, liquid chromatography-ultraviolet detection; LLE,
liquid—liquid extraction; MeCN, acetonitrile; MeOH, methanol; MEP, monoethylphthalate; MMP, monomethylphthalate; MPB, methylparaben; MSTFA, N-Methyl-N-(tri-
methylsilyl) trifluoroacetamide; PBs, parabens; PFBBr, pentafluorobenzylbromide; PFPA, pentafluoropropionic anhydride; PPB, propylparaben; SPE, solid-phase extraction;

SPME, solid-phase microextraction.

products from the effects of UV-radiation. The family of benzo-
phenones (BPs) is one of the most frequently used groups of UV-
filters. BPs consists of 12 main compounds, called from
benzophenone-1 (BP-1) to benzophenone-12 (BP-12), as well as,
other less known as 2-hydroxybenzophenone (2-OH-BP), 3-
hydroxybenzophenone (3-OH-BP) and 4-hydroxybenzophenone
(4-OH-BP). Other important families of UV-filters widely used

are camphor derivatives such as 3-(4-methylbenzylidene)
camphor (4-MBC) and 3-benzylidene camphor (3-BC) and salic-
ylates such as benzyl salicylate (BS), phenyl salicylate (PhS), octyl
salicylate (OS) and homosalate (HS). Despite their widespread
use, there is an increased concern about some of these com-
pounds because of their possible estrogenic activity. Evidence
from animal studies indicates that these substances can cause
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- LLE (ethyl acetate)

Table 5
Analytical method for EDCs determination in placenta and related matrices.
Analytes/Sample Sample treatment Analytical LOD Comments Ref.
technique
BPA(Cord blood, maternal blood, - Separate serum ELISA 0.5 ng mL~! Free content (~1—2 ng mL~!, follicular fluid, foetal serum and full- [117]
ovarian follicular fluid, amniotic ~ from blood term amniotic fluid; ~5 fold higher, amniotic fluid 15—18 weeks
fluid) gestation)
No significant correlation between maternal and foetal BPA serum
concentrations
BPA(Maternal serum, - SPE (HLB) ELISA 0.2 ng mL™! Free content (0.63—14.36 ng mL~', maternal serum; 0.20 [100]
amniotic fluid) —5.62 ng mL~', amniotic fluid)
BPA(Placenta, cord blood, - Placenta: Add water GC-MS 0.01 ng mL~! Free content (0.3—18.9 ng mL~!, maternal plasma; 0.2 [118]
maternal blood) - Blood: Obtain plasma (EI) (serum) —9.2 ng mL~!, foetal plasma; 1.0—104.9 ng g~ ', placental tissue)
- LLE (ethyl acetate) Not given in BPA plasma concentrations higher in male than in female foetuses
- Derivatization placenta
(BSTFA)
BPA, 7 alkyl phenols, 7 organ - Separate plasma GC-MS 0.05 ng mL™! Free content (<LOD—15.17 ng mL™', 88%, BPA) [119]
chlorine pesticides from blood (EI) (BPA)
(Cord blood) - SPE (C18)
- Derivatization
(BSTFA)
10 Phthalate metabolites - Enzymatic hydrolysis LC-MS/MS 0.50—1.6 ng mL~! Total content (<LOD—263.9 ng mL~!) [120]
(Amniotic fluid) (8-glucuronidase) (APCI-) Only MEP, MBP and MEHP were found in the analyzed samples
- Dilution (MeCN,
H,0, NH,0H)
- SPE (Nexus)
14 Phthalate metabolites - Enzymatic hydrolysis LC-MS/MS 0.2—0.7 ngg~!  Total content (0.4—74.8 ng g~!, 40—100%) [121]
(Meconium) (B-glucuronidase) (ESI-) Only MCPP, MECPP, MEOHP and MEHHP were found in the
- On-line SPE (HLB) analyzed samples
8 Phthalate metabolites Placenta: LC-MS/MS 0.05-0.5ng g~! Free content (0.099—49.67 ng g~ ', placental tissue; 0.065 [122]
(Placenta, cord blood) - LLE (ethyl acetate: (ESI-) (placenta) —9.68 ng mL~!, cord plasma)
cyclohexane) A human placental perfusion model is used for the estimation of
- SPE (Oasis HLB) foetal exposure to phthalates
Cord blood:
- Separate plasma
from blood
- Dilution and
acidification
- SPE (Oasis HLB)
BPA(Cord blood, - Obtain serum LC-FLD 0.6 ng mL™! Total content (<LOD—66.48 ng mL~', 84%, maternal serum; [123]
maternal blood) - Enzymatic hydrolysis <LOD-8.86 ng mL~", 40%, cord serum)
(B-glucuronidase) Positive correlation between maternal and foetal BPA
- LLE (MTBE) concentrations
5 Phthalate metabolites - Enzymatic hydrolysis LC-MS/MS 0.9—1.4 ng mL™' Total content (28.4—233.0 ng mL™', amniotic fluid; 3.6 [124]
(Amniotic fluid, maternal (B-glucuronidase) (ESI-) —1420.0 ng mL~!, maternal urine)
urine) - SPE (Nexus) Significant positive correlation between MBP concentrations in
urine and amniotic fluid
11 Phthalate metabolites - Enzymatic hydrolysis LC-MS/MS 0.15 Total content (<LOD—35.7 ng mL™") [125]
(Amniotic fluid, maternal (B-glucuronidase) (ESI-) —0.50ng mL~'  No significant correlations between levels in urine and amniotic
urine) - Add phosphoric acid (amniotic fluid)  fluid
(Amniotic fluid)
- Centrifugation
DEP, DBP, DEHP, MBP, Blood: LC-MS/MS 0.2—1.0 ng mL™' Phthalate and phthalate metabolites levels lower in cord blood ~ [126]
MEHP(Cord blood, - Separate serum (ESI-) (serum) than in maternal blood >70% of the samples had quantifiable levels
maternal blood, from blood 1.0ngg! of the analyzed compounds
meconium) - Enzymatic hydrolysis (meconium)
(B-glucuronidase)
- SPE (Nexus)
Meconium:
- Enzymatic hydrolysis
(B-glucuronidase)
- On-line SPE (HLB)
BPA, 8 hydroxylated - Separate serum LC-MS/MS 0.6 ng mL~! (BPA) Free content (<LOD—0.7 ng mL™!, 8%, cord serum, BPA; [127]
polybrominated biphenyl from blood (ESI+) <LOD—-5.4 ng mL™!, 27%, maternal serum, BPA)
ethers (Cord blood, - Dilution (water, HCI, BPA levels higher in maternal serum than in cord serum
maternal blood) 2-propanol)
- LLE (hexane/MTBE)
- Derivatization
(dansyl chloride)
- Addition of water/
hexane
- Clean-up (silica
gel column)
BPA, Clx-BPA(Placenta) - Homogenization LC-MS/MS 0.2—0.6 ngg~'  Free content (0.7—58.8 ng g~!, 20—51%) [128]
(water) (APCI-) Cl4-BPA was not found in any of the samples

(continued on next page)
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Analytes/Sample Sample treatment Analytical LOD Comments Ref.
technique
BPA(Placenta, foetal liver) - Homogenization GC-MS LOQs: Free (0.60—64 ng g~ ', 86%, placental tissue; 1.3—27 ng g ', 57%, [129]
(acetate (EI) 077 ngg~! liver tissue) and total content (1.43—280 ng g~ !, 94%, placental
buffer solution) (placenta) tissue; 3.67—124 ng g~ ', 88%, liver tissue)
- Enzymatic hydrolysis 1.2 ng g ! (liver)
(B-glucuronidase)
- LLE (MeCN)
- Dilution and SPE
(C18)
- Derivatization (acetic
anhydride)
BPA(Cord blood, - Separate plasma LC-UV 0.13 ng mL™" Free content (0.3—29.4 ng mL~!, maternal plasma; <1 ng mL~'  [130]
maternal blood) - Add ammonium most cord plasma samples)
acetate buffer
- LLE (hexane/diethyl
ether)
- Acidify with
perchloric acid
11 Phthalate metabolites - Enzymatic hydrolysis LC-MS/MS Not given Total content (<LOD—39.7 ng mL~!, cord blood) [131]
(Cord blood, breast (B-glucuronidase) (ESI-) Lower concentration of phthalate metabolites in breast milk and
milk, urine) - On-line SPE cord blood than in urine
BP-1, BP-2, BP-3, BP-6, - Homogenization UHPLC- 0.07-03ngg~! Free content (0.6—9.8 ng g~', 6-88%) [132]
BP-8, 4-OH-BP(Placenta) (water) MS/MS Neither BP-3 nor BP-8 were found in the analyzed samples
- LLE (ethyl acetate) (APCI+)
MPB, EPB, PPB, BPB(Placenta) - Homogenization UHPLC-  0.03—0.06 ng g~! Free content (0.2—10.0 ng g~', 40—96%) [133]
(water) MS/MS All the analyzed samples had at least one of the selected PBs
- LLE (ethyl acetate) (APCI-)
BP-1, BP-3, BP-6, BP-8, 4-OH-BP, - Homogenization UHPLC-  0.03-0.6ngg ! Free content (1.2—15.4 ng g !, BPA; 0.1-8.7 ng g, PBs; 0.2 [25]
MPB, EPB, PPB, BPB, BPA, Cly- (water) MS/MS —1.0ng g !, BPs)
BPA(Placenta) - LLE (ethyl acetate) (APCI-) Neither Cly-BPA nor BP-1, BP-2, BP-3 and BP-8 were detected in the
analyzed samples
BPA(Amniotic fluid) - Enzymatic hydrolysis LC-MS 0.1 ng mL™" Free (0.31—0.43 ng mL ™', 45%) and total content (0.36 [134,135]
(B-glucuronidase) (ESI-) —0.75 ng mL~!, 80%)
- Add formic acid
- SPE (C18)
BPA(Placenta, foetal liver) - Homogenization GC-MS LOQs: Free (0.55—165 ng g~ ', 88%, placental tissue; 1.02—37.7 ng g~!, [136]
(acetate buffer) (EI) 099ngg! 71%, liver tissue) and total content (1.43—280 ng g~ ', 93%,
- Enzymatic hydrolysis (Placenta) placental tissue; 3.67—124 ng g~ !, 88%, liver tissue)
(B-glucuronidase) 1.4 ng g~ ! (Foetal
- LLE (MeCN) liver)
- SPE (C18)
- Derivatization
(acetic anhydride)
6 Phthalates metabolites, - Enzymatic hydrolysis LC-MS/MS 0.01 Total content (96—99%) [137]
perfluorooctane sulfonic (B-glucuronidase) (ESI-) —0.10ng mL™!  Only 5cx-MEPP and 7cx-MMeHP were found in the analyzed
acid, cotinine (Amniotic - Precipitation proteins samples
fluid, maternal serum) (MeCN)
MEHP, 2 alkylphenols (Cord Blood: LC-MS/MS 1ngg™! Total content (1.7—6.74 pg mL~!, 66%, MEHP, maternal serum; 0.01 [138]
blood, maternal blood, - Separate serum (ESI-) (meconium) —4.92 pg mL~!, 76%, MEHP, cord serum)
meconium) and denature proteins 02-1ngmL™!  Significant correlation between the concentrations of MEHP in
- Enzymatic hydrolysis (serum) maternal and cord blood
(B-glucuronidase)
- Acidify and SPE
(Nexus)
Meconium:
- Enzymatic hydrolysis
(B-glucuronidase)
- On-line SPE (HLB)
BS, PhS, OS, HS, 4-MBC, 3- - Homogenization LC-MS/MS 0.4-0.6ngg! Free content [139]
BC(Placenta) (water) (APCI+/-) None of the target UV-filters were found in the analyzed samples
- LLE (ethyl acetate)
BP-1, BP-2, BP-3, BP-8, Blood: LC-MS/MS LOQs: Total content (0.26—2.55 ng mL~', cord blood; 0.32—2.30 ng mL~", [140]
4-OH-BP(Maternal blood, - Enzymatic hydrolysis (ESI-) 0.06 maternal blood)
Cord blood, children urine) (B-glucuronidase) —0.67ngmL~"  BP-2 and BP-8 were not detected in any of the analyzed samples

BPA(Cord blood, maternal blood)

- IPA-LLE (MTBE/
ammonium acetate/
tetrabutyl ammonium
hydrogen sulfate)

Urine:

- Enzymatic hydrolysis
(B-glucuronidase)

- LLE (MTBE/ethyl
acetate)

- Enzymatic hydrolysis

(B-glucuronidase) (ESI-)

LC-MS/MS LOQ

0.10 ng mL™"

Total content (<LOD—0.79 ng mL~", 27%, cord blood;
<LOD-29.0 ng mL~!, 67%, maternal blood)

(91]
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Table 5 (continued )

Analytes/Sample Sample treatment Analytical LOD Comments Ref.
technique
- LLE (MTBE/ethyl
acetate)
BPA, BP-3, MPB, EPB, PPB, BPB, - Enzymatic hydrolysis LC-MS/MS Not given Total content (<LOD—0.4 ng mL~!, 3%, BPA, amniotic fluid; 61%, [141]
triclosan, 2 dichlorophenols (B-glucuronidase) (APCI-) BP-3, amniotic fluid; 6—42%, PBs, amniotic fluid)
(Maternal urine, amniotic fluid) - Addition of formic EPB was not found in the analyzed amniotic fluid samples
acid
- On-line SPE (C18)
MPB, EPB, PPB, BPB, p-HB(Placenta) - LLE (ethanol) LC-UV Not given A human placental perfusion model is used for the estimation of [142]
foetal exposure to PBs
15 Phthalates (Cord blood) - Dilution (water) GC-MS 0.04 Free content (18—100%) [143]
- LLE (hexane/MTBE)/ (EI) —0.31ngmL~!  DBP, DiBP and DEHP were found in all the analyzed samples
LLE (hexane)
- Clean-up
(aminopropylene
column)
BPA, pesticides (Brain foetal - SPE (hexane) GC-MS 02ngg! Free content [144]
tissue, liver foetal tissues) - SPE (C18) (EI) GC- BPA was not found in any of the analyzed samples
TOF-MS
BPA(Maternal blood, cord blood) - Obtain serum GC-MS 0.01 ng mL~! Free content (<LOD—4.46 ng mL~', 97%, maternal serum; [145]

from blood (EI)
LLE (ethyl acetate)
Derivatization

(MTBSTFA)
MPB, EPB, PPB, BPB, BP-1, BP-2, - Lyophilization LC-MS/MS 0.1 ng g!
BP-3, BP-6, BP-8, 4-OH- - MSPD (C18, (ESI+/-)

BP(Placenta) ethyl acetate)

BPA, Clx-BPA, MPB, EPB, PPB,
BPB, BP-3(Placenta)

Lyophilization
MSPD (silica/PSA,
MeOH)

(ESI+/-)

LC-MS/MS 0.1 ngg™'

<LOD—4.60 ng mL~", 95%, cord serum)
Positive correlation between maternal serum and foetal serum BPA
concentrations

Free content (<LOD—16.1 ng g~!, 10—90%, PBs; <LOD—4.9 ng g™, [146]
30—-60%, BPs)

BP-2, BP-6, 4-OH-BP and BP-8 were not detected in any of the
analyzed samples

Free content (<LOD—16.8 ng g~ ', 10—100%, PBs; [147]
<LOD-14.5 ng g~ !, 60%, BPA; <LOD—5.3 ng g~ !, 60%, BP-3)

Abbreviations: 3-BC, 3-benzylidene camphor; 4-MBC, 4-methylbenzylidene camphor; 4-OH-BP, 4-hidroxybenzophenone; 5cx-MEPP, mono(2-ethyl-5-carboxypentyl)
phthalate; 7-cx-MMeHP, mono(4-methyl-7-carboxyheptyl)phthalate; APCI, atmospheric pressure chemical ionization, BPs, benzophenones; BP-1, benzophenone 1; BP-2,
benzophenone 2; BP-3, benzophenone 3; BP-6, benzophenone 6; BP-8, benzophenone 8; BPA, bisphenol A; BPB, butylparaben; BS, benzyl salicylate; BSTFA, N,O-
bis(trimethylsilyl)trifluoroacetamide; CIx-BPA, bisphenol A chlorinated derivatives; DBP, dibutylphthalate; DEHP, diethylhexylphthalate; DEP, diethylphthalate; DiBP; dii-
sobutylphthalate; EI, electron impact; EPB, ethylparaben; ESI, electrospray ionization; EPB, ethylparaben; GC-MS, gas chromatography-mass spectrometry; IPA-LLE, ion-pair
assisted liquid—liquid extraction; LC-FLD, liquid chromatography-fluorescence detection; LC-MS, liquid chromatography-mass spectrometry; LC-MS/MS, liquid
chromatography-tandem mass spectrometry; LC-UV, liquid chromatography-ultraviolet detection; LLE, liquid—liquid extraction; MBP, monobutylphthalate; MCPP, mono(3-
carboxypropyl)phthalate; MeCN, acetonitrile; MECPP, mono(2-ethyl-5-carboxypentyl)phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl)phthalate; MEHP, mono(2-
ethylhexyl)phthalate; MeOH, methanol; MEOHP, mono(2-ethyl-5-oxohexyl)phthalate; MEP, monoethylphthalate; MPB, methylparaben; MSPD, matrix solid phase disper-
sion; MTBE, methyl tert-butyl ether; MTBSTFA, N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide; OS, octylsalicylate; PBs, parabens; p-HB, para-hydroxybenzoic acid;
PhS, phenylsalicylate; PPB, propylparaben; PSA, primary secondary amine; SPE, solid-phase extraction; UHPLC-MS/MS, ultra high performance liquid chromatography-mass

spectrometry.

reproductive and developmental toxicity, and may also affect the
hypothalamic-pituitary-thyroid axis (HPT) which controls the
release of thyroid hormones in the body. Some of these com-
pounds have been related to female sexual behavior and
increased uterine weight of treated mice and rats [17,24].

2.4. Parabens

Parabens, the alkyl esters of p-hydroxybenzoic acid (p-HB), are
widely used as antimicrobial preservatives, especially against
mold and yeast, in cosmetic products and pharmaceuticals, and in
food and beverage processing. Methylparaben (MPB), ethyl-
paraben (EPB), propylparaben (PPB) and butylparaben (BPB) are
the most commonly used compounds, either individually or in
combination. The widespread use of parabens arises from their
low toxicity, broad inertness, worldwide regulatory acceptance
and low cost. The exposure level is reflected by the frequent
detection of the compounds in urine. At least one of the PBs was
found in nearly 100% of tested urine samples. However, there is an
increasing tendency to avoid the use of parabens because of the
growing evidence about their possible adverse effects. In this
respect, some in vivo studies suggest that exposure to these
compounds increases uterine weight in immature mice, decreases
testosterone secretion and produces reproductive tract alterations
in male rodents [13,39].

3. Analytical methods for EDCs determination in human
fluids and tissues

Tables 1—6 show the research works dealing with the deter-
mination of EDCs in human samples classified according to the
studied matrix. The matrices selected for this review have been
urine (Tables 1 and 2); serum and plasma (Tables 3 and 4); amniotic
fluid, placental tissue, meconium and cord blood (Table 5); and
breast milk (Table 6). Tables include the sample treatment,
instrumental techniques, and since LODs or limits of quantification
(LOQs) are strongly influenced by these techniques, it has been also
included together with some information about frequency of
detection of analytes, when data were available.

Tables 1, 3, 5 and 6 summarize methods for the determination of
the selected analytes in the samples under study related to child
exposition. Tables 2 and 4 show the overall exposure of the popu-
lation but where the techniques used for extraction and analysis
could be of interest for biomonitoring studies and determination of
exposure in childhood.

3.1. Sample preparation

3.1.1. Sample collection
An important aspect to take into consideration for the analysis
of the selected compounds is the necessity of taking precautions to
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Table 6
Analytical method for EDCs determination in human breast milk.
Analytes Sample treatment Analytical LOD Comments Ref
technique
BPA - Alkaline digestion GC-MS(EI) 0.09 ngg~! Total content (<0.09—0.70 ng g~ ', 66.6%) [148]
(ethanolic KOH)
- LLE (diethyl ether)
- SPE (amino)
- Derivatization
(BSTFA)
BPA - LLE (hexane) LC-FLD 0.11ngmL™!  Free content (0.28—0.97 ng mL™', 100%) [149]
- LLE (ClI5CH)
- SPE (C18)
- Derivatization
(DIB-CI)
13 Phthalates metabolites - Enzymatic hydrolysis LC-MS/MS 0.2 Total content (1.3—15.9 ng mL™!, 100%) [150]
(B-glucuronidase) (APCI-) —-19ngmL™' We detected mEHP and mNP in all of the samples
- Automated SPE (Oasis
HLB)
6 Phthalates metabolites - Enzymatic hydrolysis LC-MS/MS 0.01 Total content (<0.01-10900 ng mL~", 100%) [151]
(8-glucuronidase) (ESI-) —0.5ng mL™!
- LLE (ethyl acetate/
cyclohexane)
- SPE (Oasis HLB)
BPA, BP-3 - Enzymatic hydrolysis LC-MS/MS 0.28 Free (<LOD—6.3 ng mL™', 60%, BPA; <LOD—1.5 ng mL~!, 15%, BP-3)and  [152]
(B-glucuronidase) (APCI-) —0.51ngg ! total content (<LOD—7.3 ng mL~', 90%, BPA; <LOD—3.2 ng mL~"', 60%, BP-3)
- On-line SPE (C18)
BPA(Human colostrums) - Fat and protein ELISA 0.3 ng mL™" Total content (1—7 ng mL~", 100%) [153]
precipitation (MeCN)
- SPE (Oasis HLB)
BPA, MPB, EPB, PPB, BPB, BzPB, - Enzymatic hydrolysis LC-MS/MS <1 ng mL~" Free (0.41—1.54 ng mL~', 100%, BPA; 0.32—3.04 ng mL~', 50%, PBs; [154]
BP-3 (B-glucuronidase) (APPI-) 1.24 ng mL~', 25%, BP-3) and total content (0.73—1.62 ng mL~"', 100%, BPA;
- On-line SPE (C18) 0.70—3.00 ng mL~', 100%, PBs; 1.28 ng mL~', 25%, BP-3)
BP-2, BP-3, 3-BC, 4-MBC, EHMC, - Sodium sulfate LC-MS 1.0-2.0ng g~' Free content (2.1-121.4 ng g~ ' lipid, 0—64.7%) [155]
HMS - LLE (n-hexane/ (ESI+) Only BP-2 was determined by LC
acetone) GC-MS (EI)
- LLE (Cl,CH;/acetone)
5 Phthalates and their - LLE (pentane/acetone) GC-MS 0.47 Phthalates (0.22—305 ng mL~!, 19-97.6%, GC-MS)) [49]
metabolites - LLE (hexane/MTBE) LC-MS/MS —3.0ng mL~! Metabolites (0.49—6.5 ng mL~', 2.4—38%, LC-MS/MS)
- Enzymatic hydrolysis (APCI-)
(B-glucuronidase)
- Automated SPE (Oasis
HLB)
BPA - LLE (2-propanol) LC-FLD 0.6 ng mL™! Free (0.65—29.9 ng mL~', 100%) and total content (0.65—42.6 ng mL~", 90%) [156]
LC-MS/MS 0.39 ng mL™!
(ESI-)
BP-2, BP-3, others UV-filters - LLE (hexane) GC-MS (EI) 1.0-2.0 ng g~! Free content (22.12—52.23 ng g~!, 78%, UV-filters) [24]
LC-MS BP-2 was analyzed by LC-MS
(ESI+)
MPB, EPB, PPB, BPB, 11 - Enzymatic hydrolysis LC-MS/MS 0.5 Total content (1.12—34.05 ng mL~", 26%, PBs; 37%, phthalate metabolites) [24]
phthalate metabolites (B-glucuronidase) (ESI-) —1.0ng mL!
- LLE (MeCN)
BPA, Clx-BPA - On-line SPE (C8) LC-MS/MS 0.01 Free content (0.8—3.29 ng mL~?, 100%) [157]
(ESI-) —0.09 ng mL~! Detected chlorinated BPA derivatives
BPA, Clx-BPA(Human - On-line SPE (C8) LC-MS/MS 0.01 Free (0.54—6.12 ng mL~!, 90%) [158]
colostrums) (ESI-) —0.09 ng mL~! Detected chlorinated BPA derivatives
MPB, EPB, PPB - Protein precipitation LC-UV LOQ: Free content [159]
(MeCN) 10—20 ng mL ™"
- MIP-SPE
BPA(Human colostrums) - Enzymatic hydrolysis LC-MS/MS NO DATA Free (<LOD—54.2 ng mL™!, 39.8%) and total content (<LOD—57.3 ng mL~!, [160]
(B-glucuronidase) (ESI-) 70.6%)
- LLE (2-propanol)
BPA - Enzymatic hydrolysis LC-MS/MS 0.3 ng mL™" Free (<LOD, 30%) and total content (1.3 ng mL™1) [50]
(6-glucuronidase) (APPI-) Breast milk and formula samples did not differ in total BPA concentration
- On-line SPE (C18)
BPA - Fat and protein LC-MS/MS 0.22ng mL~!  Free content (<0.22—10.8 ng mL~!, 100%) [161]
precipitation (MeCN/ (ESI+)
hexane)
- SPE (Oasis HLB)
- Derivatization
(pyridine-3-sulfonyl)
BPA, Clx-BPA, MPB, EPB, PPB, - Fat and protein LC-MS/MS 0.1 Free content (3.2—10.8 ng mL~', 90%, BPA; 0.8—38.7 ng mL™', 80%, PBs; 0.8 [26]
BPB, BP-1, BP-3, BP-6, BP-8,4-  precipitation (MeCN/ (ESI+/-) —03ngmL! —9.9ng mL!, 90%, BPs)

OH-BP

aqueous precipitation GC-MS/MS
solution) (EI)

SBSE

Derivatization

(BSTFA)

0.1
—1.5ng mL™!
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Table 6 (continued )

Analytes Sample treatment Analytical LOD Comments Ref
technique
BPA, Cl-BPA, MPB, EPB, PPB, - Fat and protein LC-MS/MS 0.02 Free content (0.6—13.8 ng mL~!, 60%, BPA; 0.2—0.4 ng mL~', 20%, Cl,-BPA [162]
BPB, BP-1, BP-2, BP-3, BP-6, precipitation (MeCN/ (ESI+) —0.05ng mL~' 0.1-7.5 ng mL™', 90%, PBs; 0.2—17.4 ng mL~', 90%, BPs)
BP-8, 4-OH-BP Aqueous precipitation
solution)
- Clean-up (C18,
MgS04)
MPB, EPB, PPB, BPB - Lyophilization LC-MS/MS 0.1 Free content (0.5—27.2 ng mL~", 90%) [51]
- SM-SLLME (hexane/ (ESI-) —0.2 ng mL~!

dichloromethane)

BPA - Enzymatic hydrolysis GC-MS (EI) 0.21 ng g~!
(B-glucuronidase)
- Fat and protein
precipitation (MeCN)
- SPE (C18)
BPA - Enzymatic hydrolysis LC-MS/MS 0.3 ng mL™"
(B-glucuronidase) (APPI-)
- On-line SPE (C18)
BPA - MSPD (LiChrolut- LC-UV 53ngg !
MeOH/MeCN)
BP-1, BP-3, BP-6, - Lyophilization LC-MS/MS 0.1
BP-8, 4-OH-BP - UAE (MeCN) (ESI+) —0.2 ng mL™!
- Clean-up (C18, PSA,
MgSO4)
BPA - Enzymatic hydrolysis GC-MS/MS 0.3 ng mL™!
(B-glucuronidase) (NICI)

- Protein precipitation
(MeCN)

- LLE (1-chlorobutane)

- Derivatization (PFBBr)

BPA, BP-3, MPB, EPB, - Enzymatic hydrolysis LC-MS/MS 0.1

PPB, BPB (B-glucuronidase) (APCI-; —0.51 ng mL™"
- On-line SPE (C18) APPI-)
BPA - Enzymatic hydrolysis GC-MS/  0.003 ng g~

(B-glucuronidase)

- Protein precipitation
(acetone)

- SPE (HR-X)

- SPE (MIP)

- Derivatization
(MSTFA)

MS(EI)

Free (0.036—2.3 ng g~', 16.5%) and total content (0.036—2.5 ng g~ ', 25.9%) [163]

Free (LOD—0.5 ng mL~!, 20%) and total content (0.5—1.3 ng mL™', 75%)  [164]
Application to commercial cow milk samples [165]
Free content (0.31—15.7 ng mL™!, 90%) [166]

Free (<LOD—1.6 ng mL~', 4%) and total content (<LOD—1.9 ng mL~", 5%) [52]
The correlations observed between maternal breast milk and infant urine
concentrations

Total content (0.3—1.1 ng mL™!, 50%, BPA; 0.1-2.3 ng mL~!, 100%, PBs; 0.5 [167]
—10.4 ng mL™', 50%, BP-3)

Total content (0.03—1.16 ng g7, 100%) [168]

Abbreviations: 4-OH-BP, 4-hydroxybenzophenone; APCI, atmospheric-pressure chemical ionization; APPI, atmospheric pressure photoionization; BP-1, benzophenone 1; BP-
2, benzophenone 2; BP-3, benzophenone 3; BP-6, benzophenone 6; BP-8, benzophenone 8; BPA, bisphenol A; BPB, butylparaben; BSTFA, N,O-bis(trimethylsilyl)
trifluoroacetamide; Cly-BPA, chlorinated derivatives; El, electron impact; ELISA, enzyme-linked immunosorbent assay; EPB, ethylparaben; ESI, electrospray ionization; GC-
MS, Gas chromatography-mass spectrometry; GC-MS/MS, gas chromatography-tandem mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; LC-MS/MS,
liquid chromatography-tandem mass spectrometry; LC-UV, liquid chromatography-ultraviolet detection; LLE, Liquid—liquid extraction; MeCN, acetonitrile; MeOH, meth-
anol; MIP, Molecularly imprinted polymer; MISPE molecularly imprinted solid-phase extraction; MPB, methylparaben; MSTFA, N-Methyl-N-(trimethylsilyl)-tri-
fluoroacetamide; MTBE, methyl tert-butyl ether; NICI-MS, negative-ion chemical ionization-mass spectrometry; PBs, parabens; PFBBr, pentafluorobenzylbromide; PPB,
propylparaben; PSA, primary secondary amine; SM-SLLME, stir-membrane solid-liquid-liquid microextraction; SPE, solid-phase extraction; UAE, ultrasound-assisted

extraction.

avoid contamination in collection and storage. In this way, for urine
and blood samples, authors only recommend the use glassware
material accurately clean with solvents [43,44,47,85,90,91,98,101,
102,106—108,112—114]. For the analysis of BPA, some authors also
recommend the use of BPA-free deionized water
[43,56,57,70,75,104,105]. Many authors remark the importance of
checking the blanks [44—46,54,71,74,79,80,86,88,89,93,99,
102,107—114]. In the case of placental tissue samples, the authors
do not describe many precautions. In general, the sample is accu-
rately weighed, and a triangular portion, that included maternal
and fetal sides as well as central and peripheral parts, is taken. Each
portion is fragmented, beaten and placed into a container. Then, the
samples are homogenized, frozen at —86 °C until the analysis in the
laboratory [25,27,128,132,133,139,146,147]. Finally, breast milk has
been the matrix in which more considerations have been taken.
These include cleaning breast and nipples thoroughly before sam-
pling with tap water [24,155,167] or with deionized water
[159,164]; asking mothers not to use any creams or cleansers on the
breast before sampling [24,52]; avoiding the use of breast pumps,

expressing the milk sample directly into the glass bottle
[150,153,157,158]; using fuoroelastomer pumps previously rinsed
with ethanol [49]; rinsing the milk pump with hot tap water [155]
or using BPA-free manual breast pump [24]. Regardless the nature
of the sample, the most frequently precaution taken for the analysis
of BPA and phthalates is to exclude plastic ware throughout the
analytical  procedure and replace with glass ware
[119,122,123,126,130,131,138,143,145,151,153,156—161]. In addition,
some authors use previously washed glass ware with acid [161],
with methanol, acetonitrile (MeCN) and acetone [124], or with
water followed by methanol and conditioning in an oven overnight
at 200 °C [129].

3.1.2. Sample pre-treatment

For blood analysis, a previous step to isolate serum or plasma is
usually applied. While plasma is obtained by centrifugation of fresh
blood with an anticoagulant, serum is obtained by centrifugation of
blood samples without anticoagulant. In these matrices, it is also
common to precipitate proteins to reduce matrix interferences.
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Typically, this procedure is achieved mixing the sample with
organic solvents followed by a separation of proteins by
centrifugation.

For other human samples such as placenta or liver, a homoge-
nization step is typically required, usually mechanical homogeni-
zation in a buffer solution [129,136]. In the case of placenta samples,
homogenization has also been performed using an ultrasound
probe that allows the tissue to separate, followed by shaking with
deionized water [25,128,132,133,139], or simply with a mechanical
homogenizer [118,122]. Meconium is homogenized adding H3PO4
and shaking [121,126].

Owing to the high fat and protein content of human milk,
isolation of the target analytes becomes critical for the develop-
ment of any analytical method. The selection of an adequate sample
pre-treatment and treatment is crucial to reduce matrix effects. A
previous step is commonly required for fat and protein precipita-
tion. MeCN has been widely wused for this purpose
[52,153,159,162,163]. The mixture of MeCN and a solution con-
taining zinc acetate dihydrate, hydrated phosphotungstic acid,
glacial acid and deionized water, has been also successfully used
[26]. Apart from MeCN, another solvent such as 2-propanol was
used, obtaining a clear supernatant with no lipid layer [152].
Additionally, in order to facilitate sample manipulation, some au-
thors have carried out a previous lyophilization of the sample. Milk
is previously frozen at —80 °C and then introduced into the lyo-
philizator. Once lyophilized, samples are kept in a desiccator until
the analysis [51,166].

In biological matrices, the compounds usually appear as free and
conjugated forms; therefore an acid or enzymatic hydrolysis step is
usually required to determine the total content (free + conjugated).
Without the hydrolysis step, the free content can be determined,
and the difference between free and total contents would be the
conjugated amount. Hydrolysis with concentrated HCI
[59,103,101,110,112] is used because it is simpler and less time
consuming than enzymatic hydrolysis. However, since it is a mild
process, more selective and generates less by-products, enzymatic
hydrolysis is preferred instead of acid hydrolysis at present. Thus,
enzymatic hydrolysis by incubation of sample under specific con-
ditions with B-glucuronidase or with B-glucuronidase/sulfatase
(Helix pomatia or Escherichia coli) is the most common technique for
total content EDC determination [24,41-50,52,60—65,67—72,
74—76,78—81,83—85,88—100,103,104,106,109,120,123—126,131,134,
135,137,138,140,141,150,151,153,154,160,163,164,167]. After enzy-
matic hydrolysis, the enzyme is sometimes precipitated with cold
MeCN [71,75,90]; organic acids such as formic and acetic acid
[44,46,48,72,73,77,78,84,88,91,93,98,99,101,103,104,106,125,128,135,
150]; inorganic acids [46,80,99,106,110,114] and bases [42,81]; or
with the reactives used in the own extraction procedure
[41,45,47,72,81,82,86,87,89,96,100,102,106,107,111,112,123,129—131];
and then separated by centrifugation. Finally, the supernatant un-
dergoes the following sample preparation step.

Blount et al. [37] indicate that, in the case of phthalate mono-
esters analysis, H. pomatia B-glucuronidase/sulfatase should be
avoided because of its enzymatic activity that hydrolyzes phthalate
diesters to generate phthalate monoesters. E. coli B-glucuronidase
(K12; Roche Biomedical, Indianapolis, IN) can be used instead is
these cases [24,44,49,60,64,84,94,98,106,109,120,121,124,126,131,
137,138,150,151].

3.1.3. Sample treatment

Due the complexity of biological samples, an extraction tech-
nique is usually required to purify and isolate the target compounds
from the matrix. Moreover, because of EDC levels in human sam-
ples are very low, these extraction techniques must be able to
concentrate the analytes and therefore to improve the sensitivity of

the analytical method. Tables 1—6 summarize the extraction tech-
niques used in the methods published in the literature. Liquid-
—liquid extraction (LLE) and solid-phase extraction (SPE) have been
traditionally used. However, in order to reduce the solvent amounts
and to increase concentration factors, microextraction techniques
such as extraction with molecular imprinted polymers (MIPs) [169],
solid-phase microextraction (SPME) [53], stir-bar sorptive extrac-
tion (SBSE) [170], ultrasound assisted emulsification micro-
extraction with solidification of floating organic droplet (UAEM-
SFO) [41] or hollow-fiber liquid-phase microextraction (HF-LPME)
[171], dispersive liquid—liquid microextraction (DLLME) [172], stir-
membrane solid-liquid-liquid microextraction (SM-SLLME) [51],
matrix solid phase dispersion (MSPD) [174] or ultrasound-assisted
extraction (UAE) [175] have also been proposed.

A. Liquid—liquid extraction. LLE is a time-consuming technique
that often requires large volumes of organic solvents and is difficult
to automate. Urine, serum, cord serum, maternal serum, placenta
and human breast milk has been analyzed using this extraction
technique.

Urine is the biological sample more commonly extracted using
LLE due to its simple composition in comparison with other types of
biological samples. BPA [55,86,91], benzophenones derivatives [ 76],
parabens [93] and phthalate metabolites [94,98] has been analyzed
in this matrix. In the case of serum samples, the use of LLE for
sample treatment is not been very common. Nevertheless, some
analytical procedures have been developed (DEHP and MEHP [108]
or BPA [102,112,115]). It is important to remark that the application
of LLE to serum samples has two effects, sample extraction and
protein denaturalization. Therefore, in these cases LLE also implies
a sample clean-up. Regarding cord serum and maternal serum, LLE
with ethyl acetate [118,147], methyl tert-butylether (MTBE) [123],
hexane/MTBE (1:1, v/v) [127] and hexane/diethylether (DEE)
(70:30, v/v) [130] was used to extract BPA. A limit of detection
(LOD) up to 62.5 times lower was obtained using LLE with ethyl
acetate and gas chromatography-mass spectrometry (GC—MS)
analysis with a previous derivatization step than the obtained using
LLE with MTBE and liquid chromatography-fluorescence detection
(LC-FLD) analysis (0.01 ng g~ ! vs. 0.625 ng g~ 1). In other work, two
LLE steps were carried out initially with a mixture hexane/MTBE
(1:1, v/v) followed by hexane, and analyzed by GC—MS [125] for the
extraction of 15 phthalates from cord blood.

Placenta tissue has also been studied. Because this matrix is
homogenized (pre-treatment) before extraction with water or
buffer solution, the result is a rather liquid sample, a sort of mousse
or foam. Therefore, the extraction of this homogenized sample
could be considered an LLE process. Then, a liquid extraction is
carried out after homogenization. Ethyl acetate has been the most
used solvent for BPA [25,118,128], parabens [25,133] and UV-filters
[25,132,139]. LODs for parabens were up to 10 times lower than the
obtained for BPA and its chlorinated derivatives (0.03—0.06 ng g~!
vs.0.2—0.6 ng g~ 1). Ethanol has been also used for the extraction of
4 parabens and p-hydroxybenzoic acid from placental tissue [142].
In this case, the aim of the work was the use of a human placental
perfusion model for the estimation of fetal exposure to parabens.
Finally, an extraction with ethyl acetate/cyclohexane (95:5, v/v)
was carried out for the extraction of eight phthalate monoesters
from placenta samples and quantification by LC—MS/MS [122].

BPA, PBs, phthalates and BPs has been extracted from breast
milk samples with MeCN [24,163,166]. The LODs obtained ranged
from 0.1 to 0.5 ng mL~ In addition, a multi-residue method based
on a simplified sample treatment involving a step of fat and protein
precipitation using MeCN and a solution containing zinc acetate
dihydrate, hydrated phosphotungstic acid, glacial acid and deion-
ized water, is also proposed. Very good sensitivity was obtained for
BPA and chlorinated derivatives, PBs and BPs from 0.02 ng mL~! to
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0.05 ng mL~! [162]. Also, different solvents such as 2-propanol,
chloroform, chlorobutane, diethyl ether and hexane has been also
used for the extraction of BPA [52,148,149,156,160] from human
milk samples. A mixture of ethyl acetate/cyclohexane (95:5, v/v)
was used for the extraction of six phthalates using LC-MS/MS as
detection technique [151]. Very low LODs (0.01—0.5 ng mL~!) were
obtained. LLE also has been used for the analysis of UV-filters in
human breast milk samples. The samples were centrifuged and the
analytes extracted together with lipids using sodium sulfate and n-
hexane/acetone (1:1, v/v) followed by dichloromethane/acetone
(1:1 v/v) [155].

LLE can be modified using ion-pair (IP) assisted liquid—liquid
extraction (IPA-LLE). It is usually performed by adding an ion pair
reagent to the sample solution containing ions of the target ana-
lytes, to form IP complexes with higher partition coefficients than
the target analytes thus enhancing their transfer into the extractant
(organic) phase. This technique has been recently used for the
extraction of BPA [91] and five benzophenones UV-filters [140]
from cord blood and maternal blood. Both studies used tetrabuty-
lammonium hydrogen sulphate as ion-pair reagent. Similar LOQs
were obtained for BPA, BP-1 and 4-OH-PB (0.1, 0.09 and
0.06 ng mL™!, respectively) whereas for BP-8, BP-3 and BP-2 LOQs
were between 4.1 and 6.7 times higher than for BPA (0.41, 0.47 and
0.67 ng mL~!, respectively).

B. Solid-phase extraction. SPE has been widely used for the
analysis of EDCs. SPE is well adapted to multi-residue analysis,
including compounds with a wide range of polarities and physi-
cochemical properties. SPE can be used off-line, on continuous, or
coupled on-line to a chromatographic technique. It should be noted
that automated and on-line SPE systems have been widely used in
biomonitorization studies due to their high reproducibility and
continuous-working mode. Urine and serum samples have been
usually treated with SPE in both off-line and on-line modes. BPA,
alkylphenols, PBs, BPs, phthalates and other EDCs have been
determined in urine and serum using these procedures.

Octadecyl silica sorbents (C18) have been widely used for the
analysis of BPA, using SPE in the off-line mode, in urine
[54,58,59,62,71,83,84], serum [ 100,103,104,109], human breast milk
[163], amniotic fluid [134,135], cord blood [119] and tissues, pre-
viously homogenized, such as placenta [129,136], fetal liver
[129,136,144], and fetal brain [144]. The LOD obtained for BPA in
cord plasma was half of that obtained for amniotic fluid
(0.05 ng mL~! vs. 0.1 ng mL~1). Regarding placenta and liver tissues
[129,136], SPE with C18 sorbent was used as a clean-up step after
LLE with MeCN. C18 sorbents have been used for the extraction of
BPs [78], phthalates [83] and phthalate metabolites from urine [98].
SPE with C18 sorbents was used as clean-up step after LLE with
diethyl ether, hexane or chloroform for BPA [149,162], BPs [162,166]
and PBs [162] determination.

SPE with Nexus® sorbent (methacrylate-divinylbenzene copol-
ymer) also has been used to analyze EDCs. Nexus® presents some
advantages since no pre-conditioning is required and its large
particle size makes it adequate for extractions from highly viscous
samples. This sorbent was successfully used for the extraction of
PBs from urine [89] and several phthalates and phthalate metab-
olites from serum [106], amniotic fluid [120,124], maternal urine
[124], and cord serum and maternal serum [126,138]. LC—MS/MS
was used as analytical technique in all cases obtaining similar LODs
for urine, amniotic fluid and serum.

Although less commonly, another sorbent used for the analysis
of BPA, is Oasis® HLB (divinylbenzene/N-vinylpyrrolidone copol-
ymer). This sorbent was used successfully applied for the extraction
of BPA from maternal serum and amniotic fluid [100] using
enzyme-linked immunosorbent assay (ELISA). Good sensitivity was
achieved with a LOD of 0.2 ng mL~", Oasis® HLB sorbents were used

for the extraction of BPA from human milk [161] or colostrum
samples [153]. It was also used for the determination of eight
phthalate monoesters in placenta and cord serum [122]. In this
study, a human perfusion model was used to estimate fetal expo-
sure to phthalates, and in the case of placenta samples, LLE was
applied before the SPE clean-up step. The LODs obtained for
placenta tissue were markedly better than the ones for cord serum
(up to 10 times, 0.05 ng g~ ! vs. 0.5 ng mL~! for mono (2-ethyl-5-
hydroxyhexyl)phthalate (mEHHP)) using the same instrumental
technique. Oasis® HLB sorbent was also successfully used to extract
several phthalates and phthalate metabolites from meconium
[121,126]. Moderate sensitivity was achieved with LODs ranging
from 0.2 to 1 ng gL

The sorbent Oasis® MAX (mix-mode anion exchanger) was used
successfully for the extraction BPA and eleven phthalate metabo-
lites in urine [90], and extraction of four phthalates in serum [113].

In addition, and due to some of its advantages such us it is
automatable and reduces manual preparation steps, on-line SPE
coupled to LC—MS/MS is becoming very popular for the analysis of
EDCs in human samples. This technique has been widely used to
determine BPA, BPs, PBs, phthalates and phthalate metabolites in
human urine [40,42,44—48,57,60,63,64,68,74,77,79—81,85], and
BPA and PBs in serum [109,111,114]. These methods have provided
vast amounts of data for evaluating human exposure to EDCs.
Furthermore, on-line SPE has been used to analyze eleven phtha-
late metabolites in cord blood, breast milk and maternal urine
[131]; several phthalates and phthalate monoesters in meconium
[121,126,138]; and BPA, BP-3 and four PBs plus other EDCs in am-
niotic fluid and maternal urine [141]. On-line SPE coupled to
LC—MS/MS is the most used technique for the analysis of EDCs
(BPA, Clx-BPA, PBs, BP-3 or phthalate metabolites) in human breast
milk samples or colostrum [49,50,150,154,157,158,164,165]. The
LODs obtained were from 0.1 to 0.5 ng mL~" in all cases.

C. Other extraction techniques. In addition to classical LLE and
SPE, a large amount of techniques has been applied for the deter-
mination of EDCs in the selected matrices.

Molecular imprinted polymers. Several research groups, in order
to get high extraction selectivity, have developed procedures based
in molecular imprinted polymers (MIPs). These solid phases are
able to retain a specific analyte or reduced group of analytes from
the rest of the matrix. MIPs can be used in a variety of physical
forms including fibres, covering of SBSE devices or sorbents
included in SPE cartridges (MISPE) [169].

Tan et al. [73] have developed a MIP-fiber device for deter-
mining BPA in urine samples, applying chemical desorption with
methanol (5% acetic acid) for removing the analyte from the MIP.
MISPE variant coupled with capillary electrophoresis has been used
by Mei et al. [82] for the determination of BPA in urine samples.
MISPE has also been used for the determination of parabens in
human breast milk samples [159] using LC—UV. The LOQs obtained
ranged between 10 and 20 ng mL™ . Nevertheless, MIP systems
have not been much exploited so far because despite their advan-
tages such as specificity, reproducibility, and their economic effi-
ciency compared to conventional SPE sorbents, MIPs cannot be
used in multiclass or multiresidue analyses.

Solid-phase microextraction. The first SPME procedure appeared
in 1998 [53], when several benzophenones in urine were deter-
mined by direct immersion of a C18 fiber in the sample. Never-
theless, this type of SPME has been rarely used, and other SPME
devices have gained in importance in the last years.

Stir-bar sorptive extraction. SBSE, introduced in 1999 by Baltus-
sen et al. [170], has been used for the extraction of non-polar and
medium-polarity compounds from liquid samples or liquid ex-
tracts. After sorption, the compounds are chemically or thermally
desorbed [176]. SBSE has been used by Kawaguchi et al. for the
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determinations of BPA, alkylphenols and chlorophenols [61], and
BPs [69] in urine. These two research studies use a thermal
desorption device for introducing the analytes in the GC system.

In addition, a study on the determination of BPA, Cl-BPA, PBs
and BPs in human milk using stir-bar sorptive extraction has been
also proposed. In this case, a previous step is proposed for fat and
protein precipitation using the mixture of MeCN and a solution
containing zinc acetate dihydrate, hydrated phosphotungstic acid,
glacial acid and deionized water [26]. Good sensitivity was ob-
tained with LODs ranging from 0.1 to 0.3 ng mL~! with ultra-high
performance liquid chromatography tandem mass spectrometry
(UHPLC—MS/MS) analysis and from 0.1 to 1.5 ng mL~! with
GC—MS/MS analysis.

Liquid-phase microextraction. Regarding to hollow-fiber liquid-
phase micro-extraction (HP-LPME) [150], the works of Kawaguchi
et al. should be remarked [70,72]. This analytical team determined
BPA [70] and several BPs [72] in urine. In both procedures, toluene
was used as extraction solvent, and an “in situ” derivatization with
acetic acid anhydride was performed. Although this technique has
been widely applied in environmental and food matrices, EDC
determination in biological samples has seldom been used.

Ultrasound-assisted emulsification microextraction and solidifica-
tion of floating organic droplet. UAEM-SFO is another LPME tech-
nique that has not been exploited yet for EDCs determination.
Nevertheless, Wang et al. [87] developed a UAEM-SFO procedure
for determining BPA, triclosan and chlorophenols in urine. The
extraction power of this technique is clear and although the
instrumental system was capillary electrophoresis with UV detec-
tion (CE-UV), the LODs found were lower than 0.02 pg mL™",

Dispersive liquid—liquid microextraction. DLLME, introduced in
2010 by Rezaee et al. [172], has been exploited by Vela-Soria et al.
for the determination of several EDC groups in urine [95,96,99] and
serum [42,99,116]. Good sensitivity was obtained with LODs from
0.03 to 0.20 ng mL~! with UHPLC-MS/MS analysis and from 0.04 to
0.20 ng mL~" with GC-MS/MS analysis in urine. In serum, LODs
ranged from 0.1 to 0.30 ng mL~! with UHPLC-MS/MS analysis. This
technique has demonstrated to be very useful in EDCs determina-
tion, providing low extraction times and very high extraction
efficiencies.

Stir-membrane solid-liquid-liquid microextraction. Stir membrane
extraction (SME) uses a polymeric membrane as extracting phase
[173]. The use of liquid extracting phases has allowed the devel-
opment of stirrmembrane liquid—liquid microextraction (SM-
LLME). A study has developed a simultaneous solid-liquid-liquid
microextraction with a stirmembrane system (SM-SLLME) for the
determination of four parabens in lyophilized human breast milk
samples [51]. Obtained LODs ranged from 0.1 to 0.2 ng mL ™.

Matrix solid phase dispersion. MSPD was introduced by Barker in
1989 [174] to solve the troubles inherent to processing solid and
semi-solid matrices. This technique has been used for first time for
the determination of BPA in milk with LODs of 5.3 ng g~! [165].

Recently, MSPD coupled with LC—MS/MS has been used for the
determination of PBs and BPs with C18 sorbent [146], and BPA, Cl-
BPA, PBs and BP-3 with silica/PSA sorbents [147] in placental tissue
samples previously lyophilized.

Ultrasound-assisted extraction. UAE is a very common extraction
technique. Ultrasonic energy causes an effect known as “cavita-
tion”, which generates numerous tiny bubbles in liquid media and
mechanical erosion of solids and particle rupture. The most avail-
able and cheapest source of ultrasound irradiation is the ultrasonic
bath but a more efficient system is now used, a cylindrical powerful
probe for the sonication of samples [175]. Only one study has been
published on the wuse of UAE for the determination of
benzophenone-UV filters in human breast milk samples previously
lyophilized [166].

3.2. Instrumental techniques

An appropriate analytical separation technique must be selected
in order to enhance the determination of the target compounds.
Tables 1—-6 show the most commonly employed instrumental
techniques for the detection and quantification of BPA, PBs, organic
UV-filters and phthalates and its metabolites in selected human
samples.

Gas chromatography and liquid chromatography coupled to
mass spectrometry (MS or MS?) are the most usual choices. The
selection of GC or LC is usually based on the physico-chemical
properties of the analytes. LC is selected for the determination of
more polar and less volatile compounds, while GC is used to
quantify volatile or volatizable compounds. Although BPA has been
determined in brain and liver fetal tissue using GC without a pre-
vious derivatization step [144], it is usually derived by using sily-
lating or acylation reagents. The inclusion of a derivatization step
has advantages such as the improvement of the chromatographic
behavior of analytes as well as sensitivity and selectivity in MS
detection. However, it has also disadvantages such as the increase
of complexity, chances of error and total analysis time. N,0O-
bis(trimethylsilyl)trifluoroacetamide =~ (BSTFA)  and penta-
fluorobenzyl bromide (PFBBr) have been widely used for the
determination of BPA in human samples. Thus, BSTFA has been
employed for the analysis of BPA in urine [96], placenta and fetal
liver [118,119] and breast milk [49,148] and PFBBr in urine
[54,57,58,166], serum [104], and breast milk and meconium [52].
Other derivatization agents have also been used (Tables 1—-6). BPs
has been analyzed using GC—MS in urine and breast milk directly
[27,69,155] or after derivatization with BSTFA [49,96] or acetic acid
anhydride [62]. PBs has been analyzed using GC—MS in urine after
derivatization with BSTFA [49,96]. Although phthalates and their
metabolites have been analyzed preferably by LC in human sam-
ples, we have found a few studies in which GC—MS is successfully
used for the determination of phthalates and phthalate metabolites
in urine [98], serum [113], cord blood [143], and breast milk [49].
MS with electron impact ionization (EI) is the most commonly
ionization mode wused in GC—MS [24,26,53,61,69—72,75,
90,96,107,113,118,119,129,136,143—145,148,163,168]. Two impor-
tant advantages of El ionization are the small influence of molecular
structure on response and the large number of characteristic
fragment.

The best choice for EDC analysis is usually LC. As shown in
Tables 1—6, LC has been selected in several studies to determine
BPA and PBs with different detectors coupled to the LC. For
example, UV—Vis detection has been used for the determination of
PBs in urine and serum [99], and in placenta samples [142]; and for
the determination of BPs in urine [66,77] and breast milk [ 159]. This
detection system has also been used for the determination of BPA in
urine [73], cord blood and maternal blood samples [130], and breast
milk [165]. LC-FLD has not been very used for the determination of
EDCs because most EDCs do not exhibit native fluorescence.
However, LC-FLD was successfully used for the determination of
BPA in urine [59,65,67], serum [101], cord blood and maternal
blood [123], and in breast milk [149,156]. GC—MS or LC—MS were
used for confirmation.

The recent advances in analytical instrumentation have allowed
the unequivocal identification and confirmation of the presence of
any compound at very low levels using LC—MS/MS. The triple
quadrupole (QgQ) is the most common, useful and sensitive tool for
EDCs analysis. The multiple reactions monitoring (MRM) mode
allows monitoring two transitions between precursor and product
ions; it is possible to quantify and confirm the presence of EDCs in
human matrices at very low concentration levels. Regarding
multistage mass spectrometry (LC—MS") interfaces, electrospray
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ionization (ESI) is the most frequently used ionization mode for the
analysis of EDCs in urine [44,48,56,60,68,76,78,81,83,84,86,
91-95,98,99], serum [103,105,106,108,110,112,115,116], placenta
and related matrices [121,122,124—127,131,134—136,138,
140,146,147], and breast milk [24,26,51,151,155—158,160—162,166].
ESI is a soft ionization technique, suitable for polar and moderately
non-polar compounds. However, a critical aspect when using ESI
for quantitative analysis is the influence of ion suppression or
enhancement in complex samples. Atmospheric pressure chemical
ionization (APCI) has also been used as interface in the LC—MS"
analysis of EDCs in urine [40—42,45—47,63,64,74,79,80,85], serum
[114], placenta and related matrices [120,128,132—135,139,141], and
breast milk [49,150,152,167]. APCI provides more ionization options
for low polarity substances. Although to a lesser extent than in ESI,
matrix effect can also appear. Many authors use appropriate
isotopically labeled compounds as surrogate or internal standards
(i.e., 13Cyp-labeled BPA, 13Cy,-BPA; 3Cyp-labeled BP-3, 3Cy,-BP-3;
13C;,-labeled monomethylphthalate, 3C;;-mMP; 3Cqs-labeled
monoethylhexylphthalate, ~'3Ci,-mEHP;  deuterated mono-
ethylhexylphthalate, mEHP-d4; deuterated ethylparaben EPB-dg,
deuterated BPA; BPA-di4) to compensate matrix effects for the
analogous native analytes (BPA, BP-3, monomethylphthalate, mMP
and monoethylhexylphthalate, mEHP).

Capillary electrophoresis has been rarely used for the determi-
nation of EDCs in human samples. Only two methods have been
published regarding the determination of BPA in urine [82,87].

4. Discussion

Most of the literature related with the determination of EDCs in
human samples has been referred to BPA, but other EDCs such as
phthalates, parabens and organic UV-filters have been also
analyzed.

The classic LLE and SPE techniques have been the most used.
These techniques imply some desirable advantages for any sample
processing (simplicity and no necessity of advanced technical
equipments). However, their well-known deficiencies (time-con-
sumption, large volumes of organic solvents, and no selective
extraction in the case of LLE) have led to the emergence of new
sample treatment techniques, focusing particularly into micro-
extraction techniques. In this sense, recently DLLME, SBSE, MSPD or
SM-SLLME, between others, have became alternatives to the above
mentioned classic techniques.

With respect to EDCs determination in human urine and serum
samples, is important to highlight that the number of published
papers focused on the perinatal stage is scarce. LLE and SPE have
been until now the more used techniques for treating urine and
serum samples (see Tables 1—4). SPE provides good results in EDCs
exposure assessment. The remarkable versatility of SPE has been
exploited for many researching groups in the development and
application of multi-residue procedures. Nevertheless, in our
opinion, SPE implies an expensive cost of treatment, perhaps no
acceptable for some laboratories. HF-LPME, coacertive micro-
extraction and DLLME has been some of the proposed alternatives
(see Tables 1—4). Although these extraction techniques provide
good extraction recoveries, high preconcentration factors and less
volume of organic solvents, the lack of automation of these pro-
cedures means a trouble for adopting them in routine analysis
laboratories.

To process semi-solid matrices like placenta is known to be a
difficult task. However, recently the MSPD technique is becoming
an attractive alternative approach because it uses small sample size
(previously lyophilized), minimizes solvent use and it is amenable
to automation (see Table 5).

Up to now, amniotic fluid samples have been analyzed by means

of SPE. Despite its advantages such as great selectivity, high re-
coveries and good reproducibility, it has disadvantages such as
there are many steps involved and its cost (see Table 5). Regarding
cord blood, only the classic LLE and SPE techniques have been used
(see Table 5).

In the case of EDCs determination in breast milk, LLE and SPE
techniques have been recently replaced or displaced by new tech-
niques like MIPs (used only for the determination of three para-
bens), SBSE, MSPD, SM-SLLME or UAE (see Table 6).

5. Conclusions and perspectives

The assessment of EDCs human exposure implies multiresidue
methods with capacity of determining larger number of EDC
compounds, taking into account that the endocrine disrupting
phenomena is a synergic effect of disrupting compounds mixtures.
In the last few years, an increasing number of analytical methods
have been developed to determine EDCs in a great variety of human
samples. The majority of the studies have demonstrated the pres-
ence of a large amount of EDCs in these types of samples.

In this context, major advances have been made recently in
sample treatment methods and instrumental techniques for the
detection (identification and quantification) of these compounds.

With regard to the extraction techniques, most studies has been
focused on minimizing the number of steps and in the use of low
solvent amounts. In addition, microextraction techniques are
becoming alternatives in the analysis of human samples.

Also, multiresidue methods are being developed for the deter-
mination of several families of EDCs with one extraction step and
limited sample preparation.

GC—MS/MS and LC—MS/MS are the most powerful instrumental
techniques for quantifying and confirming the presence of EDCs in
human samples. Although GC—MS and GC—MS/MS are widely
used, the methods based on these techniques are typically more
tedious and complex due, for example, to the necessity of introduce
derivatization steps for certain compounds. However, LC—MS/MS
working with QqQ in MRM mode offers the required sensitivity
without the need of these stages. Because of advantages like
reduced analysis time and cost, less experimental variability and
less contact with the samples, on-line-SPE-LC—MS/MS has become
one of the most popular techniques.

On the other hand, recent advances in LC—MS using time of
flight (ToF) or orbitrap analyzers would provide a very suitable
alternative to QgQ instruments. The high resolution power
(>25,000—100,000 full width at half maximum, FWHM) and mass
accuracy (<5 ppm) of these instruments, allow the screening of
targeted as well as untargeted analytes. Moreover, the capacity to
maximize the information from a sample (full scan) allows retro-
spective analysis.

In order to determine human exposure to EDCs, the identifica-
tion and quantification of these compounds in different human
samples will continue to be a relevant research topic over the next
decade. Assessment of exposure to EDCs during gestation and
lactation will help prevent health issues arising in the future.
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