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g r a p h i c a l a b s t r a c t
� A fluorescence polarization assay for
bisphenol compounds (BPs) was
developed.

� BPs exhibited dose-dependent bind-
ing to human estrogen receptor a.

� BPs adopted distinct binding modes
owing to their structural
characteristics.

� Molecular modeling showed poten-
tial for predicting affinities of puta-
tive ligands.

� The proposed method can be applied
for preliminary screening of BPs.
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A fluorescence polarization (FP) assay based on estrogen receptor was developed for the determination
of bisphenol compounds (BPs). The human estrogen receptor a ligand binding domain (hERa-LBD) and
coumestrol were employed as recognition element and fluorescent probe, respectively. Competitive
displacement of tracer from receptor suggested that BPs exhibited dose-dependent binding to hERa-LBD.
In order to elucidate the structural basis for the interaction between BPs and hERa-LBD, molecular dy-
namics simulations were performed to explore their complexation mechanism. The docked bisphenol
compounds adopted agonist/antagonist conformations with varying positions and orientations in the
hydrophobic binding pocket, depending on their structural characteristics of bridging moieties. Inter-
estingly, the calculated binding energies were generally correlated with the experimentally measured
affinities, indicating a potential advantage of the molecular modeling approach in predicting the binding
potencies of putative ligands. Considering that the real samples may contain more than one BP, the
established FP assay can potentially be used as a pre-screening method to determine the total amounts of
bisphenol compounds.
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1. Introduction

Exposure to endocrine disrupting chemicals (EDCs) has been
confirmed to induce adverse health effects [1,2]. As one of the most
abundant EDCs, bisphenol A (BPA) is commonly used in the pro-
duction of polycarbonate plastics and epoxy resins [3,4]. Plenty of
researches have revealed the potential impact of BPA on human
health due to its endocrine disrupting property [5e7]. Therefore,
several countries and regions have restricted the use of BPA in food
packaging materials [8,9]. Meanwhile, there is still a significant
controversy regarding BPA toxicity, which has become a major
public policy issue. Recent studies of the National Toxicology Pro-
gram (NTP) pointed out the potential BPA effects on the hormone-
mediated neurologic and behavioral development [10]. In the past
decades, a series of bisphenol analogues were synthesized and
applied as substitutes for BPA [11e13]. Unfortunately, some of them
have been reported to exhibit endocrine-mediated cytotoxicity,
genotoxicity and reproductive toxicity [14e16]. Base on structural
similarity to BPA, these analogues may act via alteration of the
endocrine system, thereby resulting in adverse effects close to or
even greater than that of their parent compound [17,18].

As environmental xenoestrogens, bisphenol compounds (BPs)
share some structural and physicochemical features with natural
ligands, allowing them to target a variety of nuclear receptors (NRs)
including androgen receptor (AR), estrogen receptors (ERs),
glucocorticoid receptor (GR), peroxisome proliferator-activated
receptor g (PPARg), etc [19e23]. It can be speculated that the to-
tal effect of bisphenol compounds may be mediated by the syner-
gistic actions through various metabolic pathways [24,25]. Among
the NRs mentioned above, estrogen receptor a and b are the main
targets of EDCs and play a crucial role in the regulation of complex
physiological functions [26,27]. Both subtypes have been charac-
terized by their ability to bind endogenous estrogens (e.g., 17b-
estradiol), phytoestrogens (e.g., genistein) and xenoestrogens (e.g.,
BPA) [28,29]. Reporter gene assays also indicate that several
bisphenol compounds can induce estrogen receptor signal trans-
duction pathways in vitro [30].

Estrogen receptors are allosterically regulated transcription
factors that undergo ligand-dependent conformational selection
[31]. As members of the nuclear hormone receptor superfamily, ERs
contain three conserved functional domains, including an N-ter-
minal A/B domain, a central DNA binding domain (DBD) and a C-
terminal ligand binding domain (LBD). The LBD folds into twelve
helices, forming a ligand binding pocket (LBP) [32,33]. As a mo-
lecular switch, helix 12 (H12) locates at the C-terminal end of the
LBD and plays a key role in regulating the link between coactivator
and ligand binding sites [31,34]. Crystal structures of the human
estrogen receptor a ligand binding domain (hERa-LBD) complexed
with agonist diethylstilbestrol (DES) and selective antagonist 4-
hydroxytamoxifen (OHT) reveal that these two ligands induce
distinct conformations of H12 crucial for receptor activation [35].
Furthermore, the structure of the complex between hERa-LBD and
BPA has also been analyzed crystallographically [36]. BPA induces
an agonist conformation of hERa-LBD similar to that observed in
the DES-bound structure, with H12 capping the LBP.

Although both in vivo and in vitro studies have confirmed the
endocrine disrupting potencies of several bisphenol compounds
[20,30,37e40], however, the underlying mechanism of their es-
trogenic activities is still largely unclear. In this work, bisphenol
compounds were evaluate systematically for their ability to bind
human estrogen receptor a. To establish a fluorescence polarization
assay for BPs, the recombinant hERa-LBD protein was prepared in
an Escherichia coli expression system firstly. The binding in-
teractions between BPs and hERa-LBD were determined by using
coumestrol (CS) as tracer. Subsequently, molecular dynamics
simulations were performed to explore the binding modes of BPs
with hERa-LBD in an attempt to unravel the molecular mechanism
for their agonistic/antagonistic properties on estrogen receptor.

2. Materials and methods

2.1. Materials

Coumestrol (CS, �97.5%), 17b-estradiol (E2, >97%), diethylstil-
bestrol (DES, >98%), 2,2-bis(4-hydroxyphenyl)propane (BPA,
>99%), 2,2-bis(4-hydroxy-3-methylphenyl)propane (BPC, >98%),
bis(4-hydroxyphenyl)sulfone (BPS, 99%), 2,2-bis(4-hydroxyphenyl)
butane (BPB, �98%), 1,1-bis(4-hydroxyphenyl)ethane (BPE, �98%),
1,1-bis(4-hydroxyphenyl)-cyclohexane (BPZ, �98%), 1,1-bis(4-
hydroxyphenyl)-1-phenylethane (BPAP, >98%), 1,3-bis(2-(4-
hydroxyphenyl)-2-propyl)benzene (BPM, >98%), and 1,4-bis(2-(4-
hydroxyphenyl)-2-propyl)benzene (BPP, >98%) were purchased
from Sigma-Aldrich (St. Louis, MO, USA), TCI (Tokyo, Japan), and
Aladdin (Shanghai, China). All other reagents used were of analyt-
ical grade.

2.2. Production of the soluble receptor protein

Human estrogen receptor a ligand binding domain (hERa-LBD,
residues 282 to 595) was expressed as a glutathione S-transferase
(GST) fusion protein. The coding region was synthesized de novo
and inserted into BamHI and XhoI restriction enzyme sites of the
pGEX-4T-1 vector. Then the recombinant plasmid was transformed
into Escherichia coli strain BL21 (DE3)pLysS. The cultures were
induced overnight at 20 �C by adding IPTG (isopropyl-b-d-thio-
galactoside) to 0.5mM. Soluble GST-tagged protein in the super-
natant was purified using a glutathione-Sepharose (GSH-
Sepharose) affinity column. Homogeneity of the recombinant
hERa-LBD was confirmed by SDS-PAGE analysis.

2.3. Fluorescence polarization assay

The fluorescence polarization assay was carried out by Flex-
Station 3 microplate reader (Molecular Devices, Sunnyvale, CA,
USA). The excitation and emission wavelengths were 355 and
405 nm, respectively. In the direct binding assay, the recombinant
protein was examined for its ability to bind coumestrol. The probe
was titrated with various concentrations of protein and then the
dissociation constant (Kd,CS) of coumestrol with hERa-LBD was
obtained. In the competitive binding assay, hERa-LBD (250 nM) and
coumestrol (10 nM) were mixed in a total volume of 290 mL. Then,
10 mL of the tested compound with a range of concentrations was
added to bring the total volume to 300 mL. Each sample was sub-
jected to the fluorescence polarization experiments after being
incubated for 2 h at room temperature. The IC50 value (the con-
centration of the tested compound that inhibited the binding of
probe with hERa-LBD by 50%) was calculated from the competition
curves fitted using a four parameter logistic equation Y ¼ (A - D)/
[1 þ (X/IC50) B] þ D, where Y and X correspond to the polarization
value and the tested compound concentration, A and D are the
polarization values at zero and an infinite concentration respec-
tively, and B is the slope parameter [41]. The dissociation constant
(Kd) of the tested compound with hERa-LBD was calculated ac-
cording to the following equation: IC50/[coumestrol]¼ Kd/Kd,CS.
Data analysis was performed using GraphPad Prism 5 (GraphPad
Software, USA).

2.4. Molecular docking and binding energies calculation

The crystal structure of hERa-LBD complexed with 4-



Scheme 1. Schematic illustration of ER-based fluorescence polarization (FP) assay for bisphenol compounds. BP, bisphenol compound; CS, coumestrol; hERa-LBD, human estrogen
receptor a ligand binding domain.
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hydroxytamoxifen (OHT) was obtained from the Protein Data Bank
(PDB ID: 3ERT) [35]. The initial structures of bisphenol compounds
(BPs) were constructed by Gaussview and then optimized with
Gaussian 09 using the B3LYP/6-31G(d) method. The molecular
length and Connolly solvent-excluded volume (CSEV) of bisphenol
compounds were calculated using AutoDockTools-1.5.6 and
Chem3D Ultra 8.0, respectively. In the BP-hERa-LBD docking
experiment, the grid box was generated at the center of the active
region with adjusted box size according to the length of each BP.
Automated docking was performedwith optimized box parameters
by AutoDockTools-1.5.6 and the predicted binding energies (kcal
mol�1) were calculated using scoring function. For each experi-
ment, 10 independent docking runs were carried out and the one
with the lowest binding energy was chosen for subsequent anal-
ysis. The intermolecular interactions of BPs with hERa-LBD were
visualized by employing PyMol.

3. Results and discussion

3.1. Assessment of BPs binding potencies with hERa-LBD

In this work, the free and ER-bound tracer can be differentiated
by monitoring the polarization signal (Scheme 1). In order to
confirmwhether the fluorescence polarization assay can be applied
Fig. 1. Competitive binding of the tested compounds to hERa-LBD. Res
for the competitive binding experiment, two typical ligands, 17b-
estradiol (E2) and diethylstilbestrol (DES), were chosen to displace
the tracer. As can be seen in Fig. 1, the addition of E2 and DES
resulted in decrease of polarization values, indicating that cou-
mestrol (CS) was displaced from the CS-hERa-LBD complex. Base on
the Kd,CS of 255.50 nM previously measured in our lab, the IC50
values and dissociation constants (Kd) of hERa-LBD for E2 and DES
were determined and calculated (Table 1).

After the proposed method was established and validated, the
binding affinities of bisphenol compounds (BPs) with hERa-LBD
were determined. As shown in Fig. 1, the tested BPs exhibited dose-
dependent binding to receptor protein. As illustrated in Table 1, the
Kd values of these compounds are in the range of
2.81 mMe180.64 mM, reflecting their binding affinities to hERa-LBD.
Therefore, it can be concluded that all the examined bisphenol
compounds can bind to hERa-LBD as the functional ligands, in turn,
might result in the activation of estrogen receptor. In recent years,
several innovative techniques based on nanomaterials and elec-
trochemical sensors have been developed for the sensitive detec-
tion of BPA [42e45]. Since these methods mainly focus on BPA
rather than other analogues, they are not suitable for monitoring
multiple BPs simultaneously. By employing receptor protein as a
recognition element, the proposed fluorescence polarization assay
can potentially be applied for preliminary screening of bisphenol
ults are given as means ± SEM of three independent experiments.



Table 1
The molecular length, Connolly solvent-excluded volume (CSEV), IC50 values, dissociation constants (Kd), and binding energies for the tested compounds.

Compound Length (Å) CSEV (Å3) IC50 (mM) Kd (mM) Binding energy (kcal mol�1)

E2 12.19 262.1 0.05 1.28 �9.47
DES 12.74 250.7 0.78 19.93 �8.65
BPA 9.99 205.5 7.07 180.64 �7.04
BPC 10.36 239.7 2.75 70.26 �7.56
BPS 9.87 181.3 5.78 147.68 �7.07
BPB 10.69 224.6 1.45 37.05 �7.61
BPE 9.57 186.5 4.23 108.08 �7.12
BPZ 9.54 245.9 0.47 12.01 �8.91
BPAP 9.85 256.6 3.35 85.59 �7.43
BPM 12.15 331.6 1.39 35.51 �7.96
BPP 10.84 329.6 0.11 2.81 �9.04
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compounds in food and environmental samples.

3.2. Molecular basis for agonism and antagonism of BPs in hERa

To explore the binding modes of bisphenol compounds with
hERa-LBD, they were docked into the active site pocket, as well as
agonist (17b-estradiol, E2) and antagonist (4-hydroxytamoxifen,
OHT). Based on the crystal structure of hERa-LBD [32], the ligand
binding pocket with a probe accessible volume of approximately
450Å3 can readily accommodate bisphenol compounds
(~180e~330Å3). Additionally, the skeleton length of BPs (~10Å) is
well matched by the LBP, as summarized in Table 1. Molecular
Fig. 2. Agonist (top) and antagonist (bottom) conformations of hERa-LBD displayed
with cartoon (left) and surface (right), respectively. A, B: E2, cyan; BPA, pink; BPC,
yellow; BPS, orange. C, D: OHT, green; BPB, magenta; BPE, olive; BPZ, wheat; BPAP,
brown; BPM, red; BPP, purple. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
docking results showed that all the tested compounds completely
fit into the cavity of hERa-LBD. As shown in Fig. 2, agonist and
antagonist locate at the same site but demonstrate distinct binding
modes. The structure of the hERa-LBD-E2 complex reveals that the
ligand binding domain adopts an active conformation, sealing
agonist within the cavity and forming a hydrophobic groove to
facilitate co-activator (CoA) recruitment. In contrast, the bulky side
chain of OHT protrudes from the cavity between H3 and H11, pre-
venting the alignment of H12 over the bound ligand and inter-
rupting the signal transductions [32,35].

With regard to the bisphenol compounds investigated in this
work, they can be obviously classified into three categories ac-
cording to their distinguishing structural characteristics and bind-
ing modes (Table 2). The compounds in class I adopt an agonist
conformation that resembles E2, whereas those in class II and III
display an antagonist conformation similar to that of OHT, as can be
seen in Fig. 2. The symmetrical structures of the bridging moieties
in class I compounds may contribute to maintain the agonist
conformation of the receptor. The two phenolic hydroxyl groups
form hydrogen bondswith polar residues located at the two ends of
the cavity, namely Glu353 in H3 and Gly521 and His524 in H11
(Fig. 3). By contrast, the dissymmetric bridging moieties in other
classes of compounds (II and III) provoke a different conformation
of hERa. One of their phenolic rings locates in the active site and
form hydrogen bonds with several polar residues including Glu353,
Leu387 and Arg394, as well as a water molecule. Meanwhile, the
other phenolic ring protrudes from the pocket between H3 and H11,
adopting an antagonist conformation that resembles OHT (Fig. 2). It
is worth noting that the protruding phenolic hydroxyl group of
class II compounds makes a hydrogen bond with Thr347, as can be
observed in Fig. 3. However, the class III compoundswith a benzene
ring located at the bridging moieties may disturb the hydrophobic
pocket, resulting in the loss of a hydrogen bond at this amino acid
site. Therefore, the different binding modes for each class of com-
pounds might be attributed to their distinguishing characteristics
of bridging moieties.

3.3. Correlation analysis

As summarized in Table 1, the order of the calculated binding
potencies for BPs with hERa-LBD is in general agreement with their
binding affinities determined in FP assay. Comparison of the
calculation values versus the aforementioned experimental data
yields an R-squared value of 0.74 (Fig. 4), suggesting the potential
application of the molecular modeling approach to predict the
binding potencies between putative ligands and their respective
target receptors. In conclusion, the present work provides valuable
insights into the binding modes of bisphenol compounds to human
estrogen receptor, and thus demonstrates a structural basis for the
design of BPA substitutes devoid of endocrine toxicity.



Table 2
The docking results of bisphenol compounds to human estrogen receptor a.

Compound Structure Hydrogen bonds Estrogenicity

Class I BPA Glu353, Gly521, His524 Agonist

BPC Glu353, Gly521, His524 Agonist

BPS Glu353, Gly521, His524 Agonist

Class II BPB Thr347, Glu353, Arg394, H2O Antagonist

BPE Thr347, Glu353, Leu387, Arg394, H2O Antagonist

BPZ Thr347, Glu353, Arg394, H2O Antagonist

Class III BPAP Glu353, Arg394, H2O Antagonist

BPM Glu353, Leu387, Arg394, H2O Antagonist

BPP Glu353, Leu387, Arg394, H2O Antagonist
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4. Conclusion

In this work, the binding interactions between bisphenol com-
pounds and hERa-LBD were investigated by fluorescence polari-
zation coupled with molecular dynamics simulations. In vitro
competitive displacement assay with coumestrol as tracer sug-
gested that BPs exhibited dose-dependent binding to hERa-LBD.
Fig. 3. Computational docking of bisphenol compounds to hERa-LBD. Red sphere, water m
colour in this figure legend, the reader is referred to the Web version of this article.)
Additionally, the structural basis for the estrogenic activities of BPs
was illustrated by molecular docking. Three classes of bisphenol
compounds adopted distinct binding modes in the hydrophobic
binding pocket owing to their structural characteristics of bridging
moieties. Comparison between the calculated binding energies and
the experimentally determined dissociation constants yields an R-
squared value of 0.74, indicating a potential advantage of the
olecule; yellow dashed lines, hydrogen bonds. (For interpretation of the references to



Fig. 4. Correlation between the calculated binding energies and the experimentally
determined dissociation constants of bisphenol compounds.
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molecular modeling approach in predicting the binding potencies
of putative ligands. Considering that the real samples may contain
more than one BP, the established FP assay can potentially be used
as a pre-screening method to determine the total amounts of
bisphenol compounds.
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